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Sentiment analysis is a text processing technique aimed at identifying 
opinions and emotions within a sentence. Machine learning is commonly 
applied in this area, with algorithms such as Naïve Bayes, Support Vector 
Machine (SVM), and Random Forest being frequently used. However, 
achieving optimal accuracy remains a challenge, particularly when dealing 

with unstructured text data, such as content from social media platforms. 
This research seeks to improve sentiment analysis performance by 
implementing a stacking ensemble learning approach, which combines the 
predictive strengths of several base models. The base models selected for 
this study are Naïve Bayes, SVM, and Random Forest, while Random 
Forest also serves as the meta-model to generate final predictions. 

The study focuses on sentiment analysis in a specific context—public 
opinion following the announcement of the Indonesian presidential 
election results in 2024. The dataset comprises 6,737 tweets collected from 
the X platform using web scraping techniques in 2024. Results show that 
individual models achieved varying levels of accuracy: Naïve Bayes at 
66.84%, SVM at 77.74%, and Random Forest at 74.78%. In contrast, the 

stacking ensemble model achieved a significantly higher accuracy of 
81.53%. This improvement highlights the effectiveness of ensemble 
learning in integrating different algorithmic perspectives to enhance 
predictive performance. By leveraging the complementary strengths of 
each base model, stacking not only boosts accuracy but also increases 
model robustness, making it highly suitable for real-world sentiment 

analysis applications that involve noisy and informal textual data from 
social media. 
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1. INTRODUCTION  

The Ensemble Learning is a method in machine learning that combines several models to create a 

new model that is stronger than and has superior performance compared to when the algorithms are used 
individually [1], [2]. There are several ensemble learning techniques, such as bagging, stacking, averaging, 
and boosting, each of which is distinguished by how the model is trained and combined [1]. 

Stacking is an ensemble learning technique that works by combining the results of several different 
base models. Each base model will learn and have its own prediction results. After that, a final model will 
be created, which will combine the prediction results of all the base models, which is called a meta-model 

[3], [4]. The Stacking technique is based on the idea that each basic model has its own advantages and 
disadvantages [5]. By combining predictions from different base-models, the resulting meta-model can 
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learn and balance these advantages and disadvantages appropriately, so that the overall performance of the 

stacking model can exceed the performance of any individual model and makes it a fairly good technique 
for improving predictive power of the classifier [6], [7]. This is the advantage of the stacking technique 
compared to other ensemble learning techniques and makes stacking a suitable technique for creating 
models for processing quite complex data, such as sentiment analysis [8]. 

Sentiment analysis is the process of understanding, extracting, and processing textual data 
automatically to obtain information on opinions, feelings, and emotions contained in a sentence [9]. 

Sentiment analysis aims to understand a person's level of satisfaction and dissatisfaction  with a service or 
product, as well as understanding public perceptions regarding a person's agreement and disagreement with 
a particular topic [10]. 

Sentiment analysis is generally made using classification algorithm models such as Support Vector 
Machine (SVM), Decision Tree, K-Nearest-Neighbor (KNN), Naïve Bayes, Random Forest, etc [11], [12]. 
Several classification algorithms have been used in several previous studies regarding sentiment analysis 

carried out on opinions taken from social media X or Twitter in Indonesian, and each algorithm has different 
accuracy [11]. Comparing the SVM algorithm with other algorithms such as Naïve Bayes, Decision Tree, 
and KNN in sentiment analysis with different cases or topics, the result is that SVM accuracy is better when 
compared to other algorithms. Even though Naïve Bayes is not superior in accuracy to the SVM algorithm, 
if we refer to research conducted, Naïve Bayes still has better accuracy results when compared to the 
Decision Tree and KNN algorithms [13]. Then, suppose we refer to research that compares the Random 

Forest algorithm with other algorithms such as Naïve Bayes, KNN, Decision Tree, and Logist ic Regression. 
In that case, it can be seen that Random Forest produces better accuracy than other algorithms, including 
SVM [14]. Other research that shows that Random Forest is superior to SVM is research. From these 
studies, it can be seen that the Random Forest, SVM, and Naïve Bayes algorithms are some of the 
algorithms with the best accuracy in terms of sentiment analysis. 

Even so, sentiment analysis is not an easy task. The complexity of language and variations in 

human expressions in various sentences make sentiment analysis a challenge [15], [16]. Building a model 
that can produce accuracy and good performance is also a challenge in sentiment analysis [17], especially 
sentiment analysis of unstructured text, for example, data taken from social media such as X or Twitter has 
its own challenges because the language used is usually not appropriate. standard words, involving 
abbreviations, as well as words that are not in the dictionary, thus affecting accuracy[18], [19]. So the 
accuracy of the sentiment analysis model can still be improved with the help of other methods, for example, 

by using the ensemble stacking method. 
Based on the description above, a sentiment analysis model will be built using the ensemble 

learning stacking method, with the aim of increasing the accuracy of the model in sentiment analysis on 
unstructured text, which in this case is data collected via the social media platform [10], [20]. This sentiment 
is the public's opinion regarding the results of the 2024 Indonesian Presidential  Election. We propose to 
use Naive Bayes, Random Forest, and Support Vector Machine as base models and Random Forest as a 

meta model because these models are suitable for sentiment analysis and have been widely used by previous 
researchers. Besides that, these models also have different characteristics. 
 
2. METHOD 

The research flow presented in this experiment outlines the structured steps taken to achieve the 
objectives of the study. It begins with the identification of the problem, which serves as the foundation for 

formulating the research questions and determining the appropriate methodology. This initial phase is 
crucial to ensure that the research direction is clear and aligned with the intended goals. 

Following problem identification, the flow continues through stages such as data collection, 
analysis, and interpretation. Each step is interconnected, allowing the process to build logically upon the 
previous one. This structured approach not only helps in maintaining the consistency of the study but also 
enhances the reliability and validity of the results obtained. 

Figure 1 provides a visual representation of this research flow. It serves as a guide to understand 
how the experiment was conducted from start to finish. By presenting the process in a flowchart format, it 
becomes easier to grasp the overall methodology and appreciate the systematic effort involved in reaching 
the research conclusions. 
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Figure 1.Flow of Research 

2.1 DATA COLLECTION 

Based on the description above, a sentiment analysis model will be built using the ensemble 
learning stacking method, with the aim of increasing 
2.2 DATA PRE-PROCESSING 

This process includes a series of steps to prepare the data before creating a sentiment analysis 

model. The stages that will be carried out in the process of pre-processing data are as follows: 
2.2.1 CLEANING TEXT 

At this stage, text data will be cleaned and collected from scraping results so that the text can be 
more easily processed by the next stage. Data cleaning includes several processes such as deleting numbers 
and symbols, changing text to lowercase, and also normalizing the text or changing each word in a sentence 
to its standard or normal form to omit non-standard words, abbreviations, slang words, typo words, etc. 

Text normalization. This is done by referring to the dictionary provided, which contains non-standard words 
and standard words. 
2.2.2 TOKENIZATION 

At this stage, all text data has been cleaned and will be converted into small parts of each word in 
sentences called tokens. For example, the sentence “Indonesia Lebih Maju” will be converted to 
["Indonesia", "lebih", "maju"]. 

2.2.3 STOPWORD REMOVAL 

At this stage, any common words that do not make significant contributions to the meaning of the 
text will be removed.  The stopword dictionary will be taken from a library that has provided a list of stop 
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words, which is Sastrawi. Some examples of words included in the stopword and will be deleted are “yang”, 

“dan”, “di”, “adalah”.   

2.2.4 STEMMING 

At this stage, every word in the text will be changed be the basic word. Words with the same 
ending or words that have affixes will be changed to the basic form.   

2.3 DATA LABELING 

The method that will be used for data labeling is Lexicon-Based.  Lexicon-based Approach can be 
used to create labeled training datasets for sentiment analysis machine learning algorithms that require 
labels at the start of their training [23].  The idea behind the lexicon-based approach is that the meaning of 
a text is greatly influenced by the polarity of the words and phrases inside. This includes words such as 
adjectives, adverbs, nouns, and verbs, as well as phrases and sentences that contain them [24]. This 

approach makes use of a dictionary or list of words with predefined sentiment labels. Any data will be 
collected. Check the total score of positive words and negative words. If the word score positive exceeds 
negative scores, then the label is positive; otherwise, the label is negative. However, if the score is the same 
or 0, then the label will be neutral. 

2.4 FEATURE EXTRACTION 

In this process, feature extraction will be carried out using the Term Frequency-Inverse Document 
Frequency (TF-IDF). At this stage, every tweet will be represented as a numerical feature vector, where 
each component represents the weight of each word in the existing word dictionary. This weight is 

calculated based on the frequency of occurrence of words in tweets (TF) and is inversely proportional to 
the occurrence of the word in the entire collection of tweets (IDF). This feature extraction process aims to 
change the tweet text into a numerical representation that can be used by the model to perform further 
analysis. The formulas used for calculating Term Frequency-Inverse Document Frequency (TF-IDF) are as 
follows 
 

𝑇𝐹(𝑡, 𝑑) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 

(1) 

𝐼𝐷𝐹(𝑡, 𝐷) =𝑙𝑜𝑔 𝑙𝑜𝑔 (
𝑁

𝑑𝑓(𝑡, 𝐷)
)  

(2) 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑)𝑥 𝐼𝐷𝐹(𝑡, 𝐷) (3) 

To implement the TF-IDF method effectively, it is essential to understand 
the meaning of each variable used in the formulas. Below are the definitions of the 
terms involved: 

 

 

N  : Total number of documents in the collection 

df(t,D) : Number of documents in the collection containing term t 
TF(t,d) : Term Frequency of term t in document d 
IDF(t,D) : Inverse Document Frequency of term t in all documents D 
W(t,d) : Weight of term t in a document 
 

These variables are used in the equations for TF, IDF, and the final TF-IDF score, which together 

represent the importance of a term within a specific document in relation to a corpus of documents. 

2.5 STACKING MODELLING 

At this stage, a model will be built for sentiment analysis. Before that, the data will first be split 
into 2 parts, namely training data and testing data, with a percentage of 80% training data and 20% testing 
data. Then, training will be done on each base model, namely naïve Bayes, support vector machine, and 
random forest, using data that has been split. At every base, the model will generate predictions based on 
these features. As part of the stacking ensemble learning technique, the output from each base model is 
used as input for the meta model to generate the final prediction. This process is illustrated in Figure 2, 

which shows the stacking model architecture. Meanwhile, Table 1 describes the algorithm used, outlining 
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the steps of training base models, collecting their prediction probabilities, and feeding them into the meta 

model. This structure allows the meta model to learn from multiple perspectives, improving overall 
prediction performance. 

 

 

Figure 2. Stacking Model Illustration 

Here is the algorithm for the stacking model that will be created 

Table 1. Algortihm Stacking 

Algorithm 1. Stacking 

Input: X_train, y_train, x_test, base_models, meta_model 

Output: prediction meta model 

1. START 

2. base_model_outputs_train = [] 

3. FOR model in base_models THEN 

4.         model.fit(X_train, y_train) 

5.         probas_train = model.predict_proba(X_train) 

6.         base_model_outputs_train.append(probas_train) 

7. END FOR 

meta_features_train = np.hstack(base_model_outputs_train) 

meta_model.fit(meta_features_train, y_train) 

8. base_model_outputs_test = [] 

FOR model in base_models THEN 

9.         probas_test = model.predict_proba(X_test) 

10.         base_model_outputs_test.append(probas_test) 

11. END FOR 

meta_features_test = np.hstack(base_model_outputs_test) 

final_predictions = meta_model.predict(meta_features_test) 

12. END 

2.6 EVALUATION 

After the model-building process is complete, the next step is to evaluate model performance using 
a confusion matrix. Evaluation is carried out against each base model and meta model itself, so you can see 

the comparison of classification results between models. Because this sentiment analysis involves three 
classes—positive, negative, and neutral—the evaluation uses weighted average calculations. The metrics 
applied are Accuracy (Equation 4), Precision (Equation 5), Recall (Equation 6), and F1-Score 

(Equation 7) to ensure fair assessment across all classes. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
              (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
∑ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 𝑥 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎𝑖)𝑁

𝑖=1

∑ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎𝑖
𝑁
𝑖=1

            (5) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
∑ (𝑅𝑒𝑐𝑎𝑙𝑙𝑖 𝑥 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎𝑖)𝑁

𝑖=1

∑ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎𝑖
𝑁
𝑖=1

             (6) 
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𝑅𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
∑ (𝑅𝑒𝑐𝑎𝑙𝑙𝑖 𝑥 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎𝑖)𝑁

𝑖=1

∑ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎𝑖
𝑁
𝑖=1

             (7) 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 
∑ (𝐹−1𝑠𝑐𝑜𝑟𝑒𝑖  𝑥 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎𝑖

𝑁
𝑖=1 )

∑ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎𝑖
𝑁
𝑖=1

           (8) 

These evaluation metrics provide a comprehensive view of the model's ability to correctly classify 

sentiments across all classes. By using weighted averages, the metrics take into account the proportion of 
each class, ensuring that imbalanced class distributions do not bias the results. This is particularly important 
in multiclass classification problems where some classes may dominate. The use of these formulas allows 

for a fair comparison of performance between base models and the meta model. 

3. RESULTS AND DISCUSSION 

3.1 WEB SCRAPPING RESULT 

The total data collected was 8094 tweets with details of each keyword are as follows. 

Table 2. Data Collected by keyword.  

KEYWORD QUERY SEARCH RESULT 

Hasil pemilu 
Hasil pemilu lang:id until:2024-04-30 since:2024-03-20 -filter:links -

filter:repliess 
3482 tweet 

Hasil pemilu presiden Hasil pemilu presiden lang:id until:2024-0 4-30 since:2024-03-20 -

filter:links -filter: repliess 

156  tweet 

Hasil pilpres Hasil pilpres lang:id until:2024-04-30 sinc e:2024-03-20 -filter:links -

filter:replies 

1983 tweet 

Pemenang pemilu Pemenang pemilu lang:id until:2024-04-3 0 since:2024-03-20 -

filter:links -filter:rep liess 

1000 tweet 

Pemenang pilpres Pemenang pilpres lang:id until:2024-04-3 0 since:2024-03-20 -

filter:links -filter:rep liess 

808 tweet 

Pemenang presiden Pemenang presiden lang:id until:2024-04 30 since:2024-03-20 -

filter:links -filter:replies 

274 tweet 

Pengumuman pemilu Pengumuman pemilu lang:id until:2024-0 4-30 since:2024-03-20 -

filter:links -filter: repliess 

221 tweet 

Pengumuman pilpres Pengumuman pilpres lang:id until:2024-0 4-30 since:2024-03-20 -

filter:links -filter: repliess 

170 tweet 

 
3.2 DATA PRE-PROCESSING 

The pre-processing stage is the first step in preparing the dataset by carrying out several stages, 

namely cleaning text, tokenization, stopword removal, and stemming, as well as deleting duplicate data. 
Data cleaning of scraped tweet text includes several processes such as deleting mentions, deleting hashtags, 
deleting retweets, deleting URLs, deleting non-alphanumeric characters, deleting double spaces, and 
transforming the text into lowercase.  Then, text normalization will be carried out to change words such as 
abbreviations, non-standard words, and slang words into normal and formal words. Finally, to avoid data 
duplication, tweet data that has the same or duplicate sentences will be deleted. So the final total of tweet 

data that will be used in the next stage until the end is 6737 tweets. The following results are based on the 
analysis shown in the reference image. 
 

 

Figure 3. Cleaning Text Result 
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After the normalization stage is complete, the next step in the data preprocessing process is 

tokenization. Tokenization is the process of breaking down text into small parts called tokens, usually single 
words. This process aims to separate each element in a sentence so that it can be explained individually by 
the modeling algorithm. In this study, tokenization was carried out on tweet text that had been cleaned and 
normalized previously. For example, the sentence "is not surprised by the presidential election results 
announced by the KPU tonight ..." will be changed into a series of words such as ['already', 'not', 'surprised', 
'with', 'results', 'presidential election', 'which', 'di', 'announce', 'kpu', 'night', 'ini']. This process is very 

important because it allows each word to be identified as a feature that can be used for sentiment analysis. 
With tokenization, the model can understand the context of words in a sentence and separate words that 
have significant meaning. Tokenization is also a crucial initial stage before further processes , such as 
removing stop words, stemming, and extracting features using the TF-IDF method, are carried out. 
 

 

Figure 4. Tokenization Result 

After going through the tokenization stage, the next process in data preprocessing is stopword 
removal, which is the removal of words that are considered not to have a significant contribution to the 
meaning of the text. Stopwords are common words such as "yang", "dan", "di", "ini", "dari", and so on, 
which often appear in the text but do not provide important information in the context of sentiment analysis. 
In this study, the stopword removal process was carried out using the Sastrawi library, which provides a 
list of common words in Indonesian that are classified as stopwords. Each tokenized token will be checked 

and compared with the list, then removed if found in the list. For example, a tokenized sentence such as 
['sudah', 'tidak', 'kaget', 'dengan', 'hasil', 'pilpres', 'yang', 'di', 'umumkan', 'kpu', 'malam', 'ini'] after being 
processed becomes ['kaget', 'hasil', 'pilpres', 'umumkan', 'kpu', 'malam'], with words such as "sudah", "yang", 
"di", and "ini" having been removed. This process helps reduce noise in the data and ensures that only 
important words are used in the next stages of analysis, such as stemming and feature extraction. Thus, 
stopword removal plays a vital role in improving the efficiency and accuracy of sentiment analysis models. 

 

Figure 5.Stopword Removal Result 

The final process in the data preprocessing stage is stemming, which is the process of changing 
words that have affixes such as prefixes, suffixes, or a combination of both into a basic form (root word). 
The purpose of this process is to weave variations in word forms that have the same meaning, so as to 
improve data consistency and analysis effectiveness. In this study, the stemming process was carried out 
using the Sastrawi library, which is specifically designed to handle Indonesian language morphology. For 

example, words such as "ngumumin" are changed to "umum", "orangorang" to "orang", and "bangett" to 
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"banget". After stemming, the form of tokens that have been combined will be recombined into plain text, 

which will be used in the next stage, namely feature extraction. With stemming, the number of word 
variations in the dataset can be minimized, so that the machine learning model can recognize patterns more 
accurately and efficiently. This process is very important, especially in handling unstructured data such as 

tweets, which contain many non-standard words and spelling variations. 

 

Figure 6. Stemming Result 

3.3 LEXICON BASED LABELLING 

At this stage, labeling of text data that has been previously processed will be carried out using a 

lexicon-based approach. At this stage, a dictionary has been prepared containing the  words positive 
sentiment and negative sentiment. In this section, it is necessary to mention the image used as a reference 
in the explanatory sentence. After labeling is carried out, the data distribution for each positive, negative, 
and neutral sentiment is shown in the reference Fig. 7. 
 

 
Figure 7. Sentiment Distribution 

3.4 FEATURE EXTRACTION TF-IDF 

In this process, feature extraction is carried out using the Term Frequency-Inverse Document 
Frequency (TF-IDF) method to convert text data into a numerical format that can be processed by a 
machine learning model. The results of the TF-IDF process produce 7256 features or words, which have 

their respective weights in vector form. Figure 4.12 is an example of TF-IDF features and their weights in 
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each document. The columns in the table represent each word in the entire sentence, while each row 

represents the sequence of the document or text. This arrangement is illustrated in the reference image 

(see Figure 8). 

 

Figure 8. Word in the entire sentence 

3.5 STACKING MODELLING 

At this stage, a sentiment analysis model will be built using the ensemble learning stacking method 

involving three algorithms as the base model, namely Naive Bayes, Random Forest, and Sup port Vector 
Machine, as well as Random Forest as a meta model. The data used in creating this model is divided in a 
ratio of 80:20, where 80% of the data is used for training and 20% for testing. The result is 5389 training 
data and 1348 testing data. The following represents sample data, as depicted in the reference image (see 
Figure 9). 

 

Figure 9. Training Data Sample 

 

Figure 10. Testing Data Sample 

After the data is shared, each base model will be trained using the training data and will later 
produce predictions on the test data. Through the predict_proba function, each model will provide a 
probability for whether the data is labeled positive, negative, or neutral. The class or label that has the 
highest probability will be used as the final prediction of the model in Figure 11. 
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Figure 11. Stacking Code 

 
Figure 2 shows the prediction results and the class probability of each model against the test data. 

The order of classes 0, 1, and 2 in the table shows the negative, neutral, and positive classes in Figure 12. 
 

 

Figure 12. Naïve Bayes Probability Result 

 

 

Figure 13. Random Forest Probability Result 
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Figure 14. SVM Probability Result 

After all base models have their own predictions, the prediction results will be combined and used 
as features of the meta model. So the meta model will carry out training and testing data using these new 
features. The following is an example of a feature that the meta model will use to make final predictions in 
figure 15. 
 

 

Figure 15. Stacking the Dataset And the Result 

3.6 EVALUATION 

At this stage, all models that have been trained and have produced predictions will be evaluated 
to see their performance using the Confusion Matrix. The evaluation matrix used includes accuracy, 
precision, recall, and F1-score. Each matrix will be calculated using the following formula. The Confusion 

Matrix for the Naïve Bayes model shows that the model succeeded in predicting correctly (True Positive) 
323 data with positive sentiment, 105 data with neutral sentiment, and 473 data with negative sentiment in 
Figure 16. 
 

 

Figure 16. Naïve Bayes Model’s Confusion Matrix 
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Below are calculations to find the accuracy, precision, recall, and F1-score of the Naïve Bayes model 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
323 + 105 + 403

1348
=  

829

1348
=  0.6684 

The accuracy of the Naïve Bayes model is 0.6684 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
323

323 + 115
=  

323

438
=  0.7374 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 = 
105

105 + 44
=  

105

149
=  0,7047 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
473

473 + 288
=  

473

761
=  0,6216 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,7347)  + (386 × 0,7047) + (518 × 0,6216)

444 + 386 + 518
= 0.6835 

The precision of the Naïve Bayes model is 0.6835 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
323

323 + 121
= 

323

444
= 0,7275 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
105

105 + 281
=  

105

386
=  0.272 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 = 
473

473 + 45
=  

473

518
=  0.9131 

𝑅𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,7275) + (386 × 0.272) + (518 × 0.9131)

444 + 386 + 518
= 0, 6684 

The recall of the Naïve Bayes model is 0.6684 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,7374 × 0,7275)

(0,7374 + 0,7275)
= 0,7324 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,7047 × 0,272)

(0,7047 + 0,272)
= 0,3925 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,6216 × 0,9131)

(0,6216 + 0,9131)
= 0,7397 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 
(444 × 0,7324) + (386 × 0.3925) + (518 × 0.7397)

444 + 386 + 518
= 0, 6379 

The F-1 Score of the Naïve Bayes model is 0.6379 
 

     The Confusion Matrix for the Random Forest model shows that the model succeeded in 
predicting correctly (True Positive) 348 data with positive sentiment, 232 data with neutral sentiment, and 
428 data with negative sentiment in Figure 17. 
 

 
Figure 17. Random Forest Model's Confusion Matrix 

 
Below are calculations to find the accuracy, precision, recall, and F1-score of the Random Forest model 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
= 

348 + 232 + 428

1348
=  

1008

1348
=  0.7478 

The accuracy of the Random Forest model is 0.7478 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
348

348 + 90
= 

348

438
=  0.7945 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 = 
232

232 + 90
=  

232

222
=  0,7205 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
428

428 + 160
=  

428

588
=  0,7279 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,7945)  + (386 × 0,7205) + (518 × 0,7279)

444 + 386 + 518
= 0.7477 

The precision of the Random Forest model is 0.7477 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
348

348 + 96
=  

348

444
= 0,7838 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
232

232 + 154
=  

232

386
=  0.601 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 = 
428

428 + 90
=  

428

518
=  0.8263 

𝑅𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,7838) + (386 × 0.601) + (518 × 0.8263)

444 + 386 + 518
= 0, 7478 

The recall of the Random Forest model is 0.7478 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,7945 × 0,7838)

(0,7945 + 0,7838)
= 0,7891 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,7205 × 0,601)

(0,7205 + 0,601)
= 0,6553 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,7279 × 0,8263)

(0,7279 + 0,8263)
= 0,774 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 
(444 × 0,6718) + (386 × 0.5771) + (518 × 0.7157)

444 + 386 + 518
= 0, 745 

The F-1 score of the Random Forest model is 0.745 
 
The Confusion Matrix for the SVM model shows that the model succeeded in predicting correctly (True 
Positive) 370 data with positive sentiment, 252 data with neutral sentiment, and 426 data with negative 
sentiment in Figure 18. 
 

 

Figure 18. SVM Model’s Confusion Matrix 

 

Below are calculations to find the accuracy, precision, recall, and F1-score of the SVM model 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
= 

370 + 252 + 426

13512
=  

1048

1351
=  0.7774 

The accuracy of the SVM model is 0.7774 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
370

370 + 84
=  

370

454
=  0.815 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 =  
252

252 + 106
=  

252

358
=  0,7039 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
426

426 + 110
= 

426

536
=  0,7984 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,815)  + (386 × 0,7039) + (518 × 0,7984)

444 + 386 + 518
= 0.7754 

The precision of the naïve Bayes model is 0.7754 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
370

370 + 74
=  

370

444
= 0,8333 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
252

252 + 134
=  

252

386
=  0.6528 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 = 
426

426 + 92
=  

426

518
=  0.8224 

𝑅𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,8333) + (386 × 0.6528) + (518 × 0.8224)

444 + 386 + 518
= 0, 7774 

The recall of the SVM model is 0.7774 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,815 × 0,8333)

(0,815 + 0,8333)
= 0,824 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,7039 × 0,6528)

(0,7039 + 0,6528)
= 0,6774 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,7984 × 0,8224)

(0,7984 + 0,8224)
= 0,8084 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 
(444 × 0,824) + (386 × 0.6774) + (518 × 0.8084)

444 + 386 + 518
= 0, 8084 

The F-1 score of the SVM model is 0.8084 

 
     The Confusion Matrix for the stacking model shows that the model succeeded in predicting 

correctly (True Positive) 396 data with positive sentiment, 256 data with neutral sentiment, and 447 data 
with negative sentiment in Figure 19. 
 

 

Figure 19. Stacking Model’s Confusion Matrix 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
= 

396 + 256 + 447

13512
=  

1099

1351
=  0.8153 

Below are calculations to find the accuracy, precision, recall, and F1-score of the Stacking model 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
396

396 + 93
= 

396

489
=  0.8089 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 = 
256

256 + 59
=  

256

315
=  0.8127 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
447

447 + 97
= 

447

544
=  0,8127 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,8089)  + (386 × 0,8127) + (518 × 0,8127)

444 + 386 + 518
= 0.8152 

The accuracy of the Stacking model is 0.8152 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
396

396 + 48
=  

396

444
= 0,8919 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
256

256 + 130
=  

256

386
=  0.6632 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 = 
447

447 + 71
=  

447

518
=  0.8629 

𝑅𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,8919) + (386 × 0.6632) + (518 × 0.8629)

444 + 386 + 518
= 0, 8153 

The recall of the Stacking model is 0.8153 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,8098 × 0,8919)

(0,8098 + 0,8919)
= 0,8489 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,8127 × 0,6632)

(0,8127 + 0,6632)
= 0,7304 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,8217 × 0,8629)

(0,8217 + 0,8629)
= 0,8418 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 
(444 × 0,6718) + (386 × 0.5771) + (518 × 0.7157)

444 + 386 + 518
= 0, 8122 

The F-1 score of the Stacking model is 0.8122 
The Result of all models can be seen in the table below 

Table 3. Results Of the Model 
 

MODEL ACCURACY PRECISION RECALL F-1 SCORE 

Naïve Bayes 0.6684 0.6835 0,6684 0,6379 

Support Vector Machine 0.7774 0.7754  0,7774  0,776 

Random Forest 0.7478 0.7477 0,7478 0,745 

Ensemble Stacking (RF) 0.8153 0.8152 0,8153 0,8122 

 
4. CONCLUSION  

As a result of this experiment, an ensemble learning stacking model was formed with several 
different base models, namely the SVM, Random Forest, and Naïve Bayes algorithms. Each model carries 

out training and predictions on sentiment analysis data. The results, starting from the lowest, are the Naïve 
Bayes algorithm with an accuracy of 66.84%, followed by Random Forest with an accuracy of 74.78%, and 
the highest is SVM with an accuracy of 77.74%. The results of the three base models are compiled and used 
as input for a meta model that uses the Random Forest algorithm. The results show that the stacking 
ensemble method applied produces better accuracy than a single classifier, namely 81.53%. The 
implementation of ensemble learning through stacking, combining SVM, Random Forest, and Naïve Bayes 

as base models with a Random Forest meta-model, significantly enhances the accuracy and robustness of 
sentiment analysis on unstructured text data, demonstrating its effectiveness as a  key contribution of this 
research.. The findings in this study not only demonstrate the success of the stacking technique in improving 
the accuracy of sentiment analysis but also have important applications in social and practical contexts. In 
practice, this model can be applied by government agencies, media, or research organizations to 
automatically aggregate public opinion on national issues, such as election results. This allows for more 

responsive and accurate data-driven decision-making. In addition, this study contributes to the development 
of a robust machine learning model for unstructured data in Indonesian, which has so far been limited in 
the literature. Further research can explore this integration model with deep learning or apply it in different 
domains, such as consumer opinion or public services. 
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Sentiment analysis is a technique for processing text with the aim of 

identifying opinions and emotions within a sentence. In its approach, 

machine learning has become a commonly used method. Several 

algorithms such as Naive Bayes, Support Vector Machine (SVM), and 

Random Forest are often used in this analysis. However, creating a model 

that has optimal accuracy is still a challenge, especially for sentiment 

analysis of unstructured text data. The aim of this research is to try to 

improve the accuracy of the sentiment analysis model by using the 

ensemble learning stacking method approach, namely a method for 

combining several base models to produce better model performance. The 

algorithms that will be the base models in this stacking are Random Forest, 

Naive Bayes and SVM, while the model that makes the final prediction or 

what is called a meta model will use Random Forest. This sentiment 

analysis was carried out in a specific context, namely public opinion after 

the announcement of the results of the 2024 Indonesian presidential 

election. The dataset analyzed using reviews or public opinion regarding 

the results of the 2024 Indonesian presidential election was 6737 tweet 

data collected via the X platform using web scraping. As a result, the Naïve 

Bayes method got an accuracy of 66.84%, SVM got an accuracy of 

77.74%, Random Forest got an accuracy of 74.78% and stacking got an 

accuracy of 81.53%. 
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1. INTRODUCTION  

The Ensemble Learning is a method in machine learning that combines several models to create a new 

model that is stronger than and has superior performance compared to when the algorithms are used 

individually [1], [2]. There are several ensemble learning techniques such as bagging, stacking, averaging 

and boosting, each technique is distinguished by how the model is trained and combined [1]. 

Stacking is an ensemble learning technique that works by combining the results of several different base-

models. Each base-model will learn and have its own prediction results, after that a final model will be created 

which will combine the prediction results of all the base-models which is called a meta-model [3], [4]. The 

Stacking technique is based on the idea that each basic model has its own advantages and disadvantages [5]. 

By combining predictions from different base-models, the resulting meta-model can learn and balance these 

advantages and disadvantages appropriately, so that the overall performance of the stacking model can exceed 

the performance of any individual model and makes it a fairly good technique for improving predictive power 

of the classifier [6], [7]. This is the advantage of the stacking technique compared to other ensemble learning 

techniques and makes stacking a suitable technique for creating models for processing quite complex data 

such as sentiment analysis [8] 

Sentiment analysis is the process of understanding, extracting and processing textual data automatically to 

obtain information on opinions, feelings and emotions contained in a sentence [9]. Sentiment analysis aims to 

understand a person's level of satisfaction and dissatisfaction  with a service or product, as well as 

understanding public perceptions regarding a person's agreement and disagreement with a particular topic [10] 
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Sentiment analysis is generally made using classification algorithm models such as Support Vector Machine 

(SVM), Decission Tree, K-Nearest-Neighbor (KNN), Naïve Bayes, Random Forest, etc [11], [12]. Several 

classification algorithms have been used in several previous studies regarding sentiment analysis carried out 

on opinions taken from social media X or Twitter in Indonesian and each algorithm has different accuracy 

[11]. Compared the SVM algorithm with other algorithms such as Naïve Bayes, Decission Tree and KNN in 

sentiment analysis with different cases or topics, the results is that SVM accuracy is better when compared to 

other algorithms. Even though Naïve Bayes is not superior in accuracy to the SVM algorithm, if we refer to 

research conducted  Naïve Bayes still has better accuracy results when compared to the Decision Tree and 

KNN algorithms [13]. Then, if we refer to research which compared the Random Forest algorithm with other 

algorithms such as Naïve Bayes, KNN, Decission Tree and Logistic Regression, it can be seen that Random 

Forest produces better accuracy than other algorithms including SVM [14]. Other research that shows that 

Random Forest is superior to SVM is research From these studies, it can be seen that the Random Forest, 

SVM and Naïve Bayes algorithms are some of the algorithms with the best accuracy in terms of sentiment 

analysis. 

Even so, sentiment analysis is not an easy task to do. The complexity of language and variations in human 

expressions in various sentences make sentiment analysis a challenge [15], [16]. Building a model that can 

produce accuracy and good performance is also a challenge in sentiment analysis [17] especially sentiment 

analysis of unstructured text, for example data taken from social media such as X or Twitter has its own 

challenges because the language used is usually not appropriate. standard words, involving abbreviations, as 

well as words that are not in the dictionary, thus affecting accuracy[18], [19]. So the accuracy of the sentiment 

analysis model can still be improved with the help of other methods, for example by using the ensemble 

stacking method. 

Based on the description above, a sentiment analysis model will be built using the ensemble learning 

stacking method, with the aim of increasing the accuracy of the model in sentiment analysis on unstructured 

text, which in this case is data collected via the social media platform [10], [20]. This sentiment is the public's 

opinion regarding the results of the 2024 Indonesian Presidential Election. We propose to use Naive Bayes, 

Random Forest and Support Vector Machine as base models and Random Forest as a meta model because 

these models are suitable for sentiment analysis and have been widely used by previous researchers. Beside 

from that, these models also have different characteristics. 

 

2. METHOD 

The research flow presented in this experiment outlines the structured steps taken to achieve the 

objectives of the study. It begins with the identification of the problem, which serves as the foundation for 

formulating the research questions and determining the appropriate methodology. This initial phase is 

crucial to ensure that the research direction is clear and aligned with the intended goals. 

Following problem identification, the flow continues through stages such as data collection, analysis, 

and interpretation. Each step is interconnected, allowing the process to build logically upon the previous 

one. This structured approach not only helps in maintaining the consistency of the study but also enhances 

the reliability and validity of the results obtained. 

Figure 1 provides a visual representation of this research flow. It serves as a guide to understand how the 

experiment was conducted from start to finish. By presenting the process in a flowchart format, it becomes 

easier to grasp the overall methodology and appreciate the systematic effort involved in reaching the 

research conclusions. 
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Fig 1. Flow of Research 

A. DATA COLLECTION 

Based on the description above, a sentiment analysis model will be built using the ensemble learning 

stacking method, with the aim of increasing 

B. DATA PRE-PROCESSING 

This process includes a series of steps to prepare the data before creating a sentiment analysis model. Stages 

that will be carried out in the process pre-processing data is as follows: 

1) CLEANING TEXT 

At this stage, text data will be cleaned has been collected from scrapping results so that the text can be made 

easier  processed by the next stage. Data cleaning includes several  processes such as deleting numbers and 

symbols, changing text to lowercase and also normalize the text or change each word in a sentence becomes 

standard or normal form for omission non-standard words, abbreviations, slang words, typo words etc. Text 

normalization This is done by referring to the dictionary provided which contains non-standard words and 

actual standard words. 

2) TOKENIZATION 

At this stage, every text data has been cleaned will be convert into small parts of each word in  sentences 

are called tokens. For example, sentence “Indonesia Lebih Maju” will be converted to ["Indonesia", "lebih", 

"maju"] 

3) STOPWORD REMOVAL 

At this stage, any common words are not make significant contributions to the meaning of the text will be 

removed.  The stopword dictionary will be taken from a library that has provided a list the stop words are 
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Sastrawi. Some examples of words included in the stopword and will be deleted are like “yang”, “dan”, 

“di”, “adalah”.   

4) STEMMING 

At this stage, every word in the text will be changed  be the basic word. Words with the same ending or 

words those with affixes will be changed to the basic form.   

C. DATA LABELING 

The method that will be used for data labeling is Lexicon Based.  Lexicon based Approach can be used to 

create labeled training datasets for sentiment analysis machine learning algorithms that require labels at the 

start his training [23].  The idea behind the lexicon based approach is that the meaning of a text is greatly 

influenced by the polarity of the words and phrases in inside. This includes words such as adjectives, 

adverbs, nouns, verbs, as well as phrases and sentences that contain them [24]. This approach makes use of 

a dictionary or list of words with predefined sentiment labels. Any data will be carried out Check the total 

score of positive words and negative words. If the word score positive exceeds negative scores, then the 

label is positive, and vice versa then the label is negative. However, if the score is the same or 0, then the 

label is will be neutral. 

D. FEATURE EXTRACTION 

In this process, feature extraction will be carried out using the Term Frequency-Inverse Document 

Frequency (TF-IDF). At this stage, every tweet will be represented as a numerical feature vector, where 

each component The vector will represent the weight of each word in the existing word dictionary. This 

weight calculated based on the frequency of occurrence of words in tweets (TF) and inverse proportional 

to the occurrence of the word in the entire collection of tweets (IDF). This feature extraction process aims 

to change the tweet text into a numerical representation that can be used by the model to perform analysis 

further sentiment.  The formulas of TF-IDF are as follows: 

 

𝑇𝐹(𝑡, 𝑑) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 

(1) 

𝐼𝐷𝐹(𝑡, 𝐷) = log (
𝑁

𝑑𝑓(𝑡, 𝐷)
) 

(2) 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑)𝑥 𝐼𝐷𝐹(𝑡, 𝐷) (3) 

• N : Total number of documents in the collection 

• df(t,D): Number of documents in the collection containing term t 

• TF(t,d): Term Frequency of term t in document d 

• IDF(t,D): Inverse Document Frequency of term t in all documents D 

• W(t,d): Weight of term t in a document 

E. STACKING MODELLING 

At this stage a model will be built for sentiment analysis. Before that, The data will first be split into 2 parts, 

namely training data and testing data with a percentage of 80% training data and 20% test data. Then, it 

will be done training on each base model, namely naïve Bayes, support vector machine and random forest 

use data that has been split. Every base the model will generate predictions based on these features. Then 

as in the ensemble learning stacking technique stage, the output from the base model will be used as a 

feature for the meta model model, which is in charge combining predictions from the base model to produce 

a prediction the new one. The following is an illustration of the stacking model that will be combined. 

 

 

Fig 2. Stacking Model Illustration 
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Here is the algorithm for the stacking model that will be created 

Table 1. Algortihm Stacking 

Algorithm 1. Stacking  

Input: X_train, y_train, x_test, base_models, meta_model 

Ouput: prediction meta model 

1. START 

2. base_model_outputs_train = [] 

3. FOR model in base_models THEN 

4.         model.fit(X_train, y_train) 

5.         probas_train = model.predict_proba(X_train) 

6.         base_model_outputs_train.append(probas_train) 

7. END FOR 

meta_features_train = np.hstack(base_model_outputs_train) 

meta_model.fit(meta_features_train, y_train) 

8. base_model_outputs_test = [] 

FOR model in base_models THEN 

9.         probas_test = model.predict_proba(X_test) 

10.         base_model_outputs_test.append(probas_test) 

11. END FOR 

meta_features_test = np.hstack(base_model_outputs_test) 

final_predictions = meta_model.predict(meta_features_test) 

12. END 

F. EVALUATION 

After the model building process is complete, the next step is evaluate model performance using confusion 

matrix. Evaluation is carried out against each base model and meta model itself, so you can see the 

comparison of classification results between models. Because this sentiment analysis has 3 labels, namely 

positive, negative and neutral (multi class), the calculation of each metric will use the concept of a weighted 

average where the formula is as follows 

 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
 

(4)  

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  

∑ (𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑖 𝑥 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎𝑖)𝑵
𝒊=𝟏

∑ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎𝑖
𝑵
𝒊=𝟏

 
(5) 

 

 
𝑅𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  

∑ (𝑅𝑒𝑐𝑎𝑙𝑙𝑖 𝑥 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎𝑖)𝑵
𝒊=𝟏

∑ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎𝑖
𝑵
𝒊=𝟏

 
(6) 

 

 
𝐹 − 1𝑆𝑐𝑜𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  

∑ (𝐹 − 1𝑠𝑐𝑜𝑟𝑒𝑖  𝑥 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎𝑖)𝑵
𝒊=𝟏

∑ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎𝑖
𝑵
𝒊=𝟏

 
(7) 

 

 

 

These evaluation metrics provide a comprehensive view of the model's ability to correctly classify 

sentiments across all classes. By using weighted averages, the metrics take into account the proportion of 

each class, ensuring that imbalanced class distributions do not bias the results. This is particularly important 

in multiclass classification problems where some classes may dominate. The use of these formulas allows 

for a fair comparison of performance between base models and the meta model. 
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3. RESULTS AND DISCUSSION 

A. WEB SCRAPPING RESULT 

The total data collected was 8094 tweets with details of each keyword are as follows. 

Table 2. Data Collected by keyword.  

 

Keyword Query Search Result 

Hasil pemilu 
Hasil pemilu lang:id until:2024-04-30 since:2024-03-20 

-filter:links -filter:repliess 
3482 tweet 

Hasil pemilu presiden Hasil pemilu presiden lang:id until:2024-0 4-30 

since:2024-03-20 -filter:links -filter: repliess 

156  tweet 

Hasil pilpres Hasil pilpres lang:id until:2024-04-30 sinc e:2024-03-20 

-filter:links -filter:repliess 

1983 tweet 

Pemenang pemilu Pemenang pemilu lang:id until:2024-04-3 0 since:2024-

03-20 -filter:links -filter:rep liess 

1000 tweet 

Pemenang pilpres Pemenang pilpres lang:id until:2024-04-3 0 since:2024-

03-20 -filter:links -filter:rep liess 

808 tweet 

Pemenang presiden Pemenang presiden lang:id until:2024-04 30 

since:2024-03-20 -filter:links -filter:re pliess 

274 tweet 

Pengumuman pemilu Pengumuman pemilu lang:id until:2024-0 4-30 

since:2024-03-20 -filter:links -filter: repliess 

221 tweet 

Pengumuman pilpres Pengumuman pilpres lang:id until:2024-0 4-30 

since:2024-03-20 -filter:links -filter: repliess 

170 tweet 

 

B. DATA PRE-PROCESSING 

The pre-processing stage is the first step in preparing the dataset by carrying out several stages, namely 

cleaning text, tokenization, stopword removal and stemming as well as deleting duplicate data. Data 

cleaning of scrapped tweet text includes several processes such as deleting mentions, deleting hashtags, 

deleting retweets, deleting URLs, deleting non-alphanumeric characters, deleting double spaces and 

transform the text into lowercase.  Then, text normalization will be carried out to change words such as 

abbreviations, non-standard words, and slang words into normal and formal words. Finally, to avoid data 

duplication, tweet data that has the same or duplicate sentences will be deleted. So the final total of tweet 

data that will be used in the next stage until the end is 6737 tweets. Here are the results 

 

 

Fig 3. Cleaning Text Result 

 

Next, the tweet text that has been cleaned will be broken down into pieces of words in sentences called 

tokens. Following are some results from the tokenization process 
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Fig 4. Tokenization Result 

 

Next, we enter the stopword removal stage, the tweet text which is already in token form will be removed 

by words that have no meaning in the text. This process was assisted with library assistance from Sastrawi. 

This library provides a function that can provide a list of words in Indonesian that have no meaning. The 

stopword removal process will refer to the list of words provided by the library. Here are the results 

 

 

Fig 5. Stopword removal Result 

 

The final process is stemming. This stage functions to change words that have affixes into basic words. 

This process also uses the stemming function that already exists in the Sastrawi library. In this process, the 

text form will be returned from token to plain text. The following are some texts that have undergone the 

stemming process 

 

 

Fig 6. Stemming Result 
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C. LEXICON BASED LABELLING 

At this stage, labeling of text data that has been previously processed will be carried out using a lexicon-

based approach. At this stage, a dictionary has been prepared containing the words positive sentiment and 

also negative sentiment. After labeling is carried out, the data distribution for each positive, negative and 

neutral sentiment is as follows. 

 

 

Fig 7. Sentiment Distribution 

D. FEATURE EXTRACTION TF-IDF 

In this process, feature extraction is carried out using the Term Frequency-Inverse Document Frequency 

(TF-IDF) method to convert text data into a numerical format that can be processed by a machine learning 

model. The results of the TF-IDF process produce 7256 features or words which have their respective 

weights in vector form. Figure 4.12 is an example of TF-IDF features and their weights in each document. 

The columns in the table represent each word in the entire sentence, while each row represents the sequence 

of the document or text 

 
Fig 8. Word in the entire sentence 

E. STACKING MODELLING 

At this stage, a sentiment analysis model will be built using the ensemble learning stacking method 

involving three algorithms as the base model, namely Naive Bayes, Random Forest, and Support Vector 

Machine, as well as Random Forest as a meta model. The data used in creating this model is divided in a 

ratio of 80:20, where 80% of the data is used for training and 20% for testing. The result is 5389 training 

data and 1348 testing data. The following is sample data 
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Fig 9. Training Data Sample 

 

 

Fig 10. Testing Data Sample 

 

After the data is shared, each base model will be trained using the training data and will later produce 

predictions on the test data. Through the predict_proba function, each model will provide a probability for 

whether the data is labeled positive, negative or neutral. The class or label that has the highest probability 

will be used as the final prediction of the model 

 

Fig 11. Stacking Code 

 

Figure 2 shows the prediction results and the class probability of each model against the test data. The order 

of classes 0, 1 and 2 in the table shows the negative, neutral and positive classes 
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Fig 12. Naïve Bayes Probability Result 

 

 

Fig 13. Random Forest Probability Result 

 

 

Fig 14. SVM Probability Result 

 

 

After all base models have their own predictions, the prediction results will be combined and used as 

features of the meta model. So the meta model will carry out training and testing data using these new 

features. The following is an example of a feature that will be used by the meta model to make final 

predictions 
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Fig 15. Stacking Dataset And Result 

F. EVALUATION 

At this stage, all models that have been trained and have produced predictions will be evaluated to see their 

performance using the Confusion Matrix. The evaluation matrix used includes accuracy, precision recall, 

and F1-score. Each matrix will be calculated using the following formula 

 

The Confusion Matrix for the Naïve Bayes model shows that the model succeeded in predicting correctly 

(True Positive) 323 data with positive sentiment, 105 data with neutral sentiment, 473 data with negative 

sentiment 

 

 

Fig 16. Naïve bayes Model’s Confussion Matrix 

 

Below are calculations to find the accuracy, precision, recall, and F1-score of the Naïve Bayes model 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
323 + 105 + 403

1348
=  

829

1348
=  0.6684 

The accuracy of the Naïve Bayes model is 0.6684 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
323

323 + 115
=  

323

438
=  0.7374 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 =  
105

105 + 44
=  

105

149
=  0,7047 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
473

473 + 288
=  

473

761
=  0,6216 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,7347)  + (386 × 0,7047) + (518 × 0,6216)

444 + 386 + 518
= 0.6835 

The precission of the Naïve Bayes model is 0.6835 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
323

323 + 121
=  

323

444
= 0,7275 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
105

105 + 281
=  

105

386
=  0.272 
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𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  
473

473 + 45
=  

473

518
=  0.9131 

𝑅𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,7275) + (386 × 0.272) + (518 × 0.9131)

444 + 386 + 518
= 0, 6684 

The recall of the Naïve Bayes model is 0.6684 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,7374 × 0,7275)

(0,7374 + 0,7275)
= 0,7324 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,7047 × 0,272)

(0,7047 + 0,272)
= 0,3925 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,6216 × 0,9131)

(0,6216 + 0,9131)
= 0,7397 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,7324) + (386 × 0.3925) + (518 × 0.7397)

444 + 386 + 518
= 0, 6379 

The F-1 Score of the Naïve Bayes model is 0.6379 

 

The Confusion Matrix for the Random Forest model shows that the model succeeded in predicting correctly 

(True Positive) 348 data with positive sentiment, 232 data with neutral sentiment, 428 data with negative 

sentiment 

 

 

Fig 17. Random Forest Model’s  Confussion Matrix 

 

Below are calculations to find the accuracy, precision, recall, and F1-score of the Random Forest model 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
=  

348 + 232 + 428

1348
=  

1008

1348
=  0.7478 

The accuracy of the Random Forest model is 0.7478 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
348

348 + 90
=  

348

438
=  0.7945 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 =  
232

232 + 90
=  

232

222
=  0,7205 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
428

428 + 160
=  

428

588
=  0,7279 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,7945)  + (386 × 0,7205) + (518 × 0,7279)

444 + 386 + 518
= 0.7477 

The precission of the Random Forest model is 0.7477 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
348

348 + 96
=  

348

444
= 0,7838 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
232

232 + 154
=  

232

386
=  0.601 
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𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  
428

428 + 90
=  

428

518
=  0.8263 

𝑅𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,7838) + (386 × 0.601) + (518 × 0.8263)

444 + 386 + 518
= 0, 7478 

The recall of the Random Forest model is 0.7478 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,7945 × 0,7838)

(0,7945 + 0,7838)
= 0,7891 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,7205 × 0,601)

(0,7205 + 0,601)
= 0,6553 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,7279 × 0,8263)

(0,7279 + 0,8263)
= 0,774 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,6718) + (386 × 0.5771) + (518 × 0.7157)

444 + 386 + 518
= 0, 745 

The F-1 Score of the Random Forest model is 0.745 

 

The Confusion Matrix for the SVM model shows that the model succeeded in predicting correctly (True 

Positive) 370 data with positive sentiment, 252 data with neutral sentiment, 426 data with negative 

sentiment 

 

 

Fig 18. SVM Model’s Confussion Matrix 

 

Below are calculations to find the accuracy, precision, recall, and F1-score of the SVM model 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
=  

370 + 252 + 426

13512
=  

1048

1351
=  0.7774 

The accuracy of the SVM model is 0.7774 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
370

370 + 84
=  

370

454
=  0.815 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 =  
252

252 + 106
=  

252

358
=  0,7039 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
426

426 + 110
=  

426

536
=  0,7984 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,815)  + (386 × 0,7039) + (518 × 0,7984)

444 + 386 + 518
= 0.7754 

The precission of the naïve Bayes model is 0.7754 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
370

370 + 74
=  

370

444
= 0,8333 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
252

252 + 134
=  

252

386
=  0.6528 
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𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  
426

426 + 92
=  

426

518
=  0.8224 

𝑅𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,8333) + (386 × 0.6528) + (518 × 0.8224)

444 + 386 + 518
= 0, 7774 

The recall of the SVM model is 0.7774 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,815 × 0,8333)

(0,815 + 0,8333)
= 0,824 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,7039 × 0,6528)

(0,7039 + 0,6528)
= 0,6774 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,7984 × 0,8224)

(0,7984 + 0,8224)
= 0,8084 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,824) + (386 × 0.6774) + (518 × 0.8084)

444 + 386 + 518
= 0, 8084 

The F-1 Score of the SVM model is 0.8084 

 

The Confusion Matrix for the stacking model shows that the model succeeded in predicting correctly (True 

Positive) 396 data with positive sentiment, 256 data with neutral sentiment, 447 data with negative 

sentiment. 

 

 

Fig 19. Stacking Model’s Confussion Matrix 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
=  

396 + 256 + 447

13512
=  

1099

1351
=  0.8153 

Below are calculations to find the accuracy, precision, recall, and F1-score of the Stacking model 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
396

396 + 93
=  

396

489
=  0.8089 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 =  
256

256 + 59
=  

256

315
=  0.8127 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
447

447 + 97
=  

447

544
=  0,8127 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,8089)  + (386 × 0,8127) + (518 × 0,8127)

444 + 386 + 518
= 0.8152 

The accuracy of the Stacking model is 0.8152 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
396

396 + 48
=  

396

444
= 0,8919 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
256

256 + 130
=  

256

386
=  0.6632 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  
447

447 + 71
=  

447

518
=  0.8629 

𝑅𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,8919) + (386 × 0.6632) + (518 × 0.8629)

444 + 386 + 518
= 0, 8153 
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The recall of the Stacking model is 0.8153 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,8098 × 0,8919)

(0,8098 + 0,8919)
= 0,8489 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,8127 × 0,6632)

(0,8127 + 0,6632)
= 0,7304 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,8217 × 0,8629)

(0,8217 + 0,8629)
= 0,8418 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
(444 × 0,6718) + (386 × 0.5771) + (518 × 0.7157)

444 + 386 + 518
= 0, 8122 

The F-1 Score of the Stacking model is 0.8122 

The Result of all model can be seen in the table below 

Table 3. Results Of Model 

 

Model Accuracy Precission Recall F-1 Score 

Naïve Bayes 0.6684 0.6835 0,6684 0,6379 

Support Vector Machine 0.7774 0.7754 0,7774 0,776 

Random Forest 0.7478 0.7477 0,7478 0,745 

Ensemble Stacking (RF) 0.8153 0.8152 0,8153 0,8122 

 

4. CONCLUSION  

As a result of this experiment, an ensemble learning stacking model was formed with several 

different base models, namely the SVM, Random Forest and Naïve Bayes algorithms. Each model carries 

out training and predictions on sentiment analysis data. The results, starting from the lowest, are the Naïve 

Bayes algorithm with an accuracy of 66.84%, followed by Random Forest with an accuracy of 74.78%, and 

the highest is SVM with an accuracy of 77.74%. The results of the three base models are compiled and used 

as input for a meta model that uses the Random Forest algorithm. The results show that the stacking 

ensemble method applied produces better accuracy than a single classifier, namely 81.53%. Thus, it can be 

concluded that ensemble learning stacking with the SVM, Random Forest and Naïve Bayes base models as 

well as meta models using Random Forest can increase the accuracy of sentiment analysis models on 

unstructured text data 
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Sentiment analysis is a technique for processing text with the aim of 
identifying opinions and emotions within a sentence. In its approach, 
machine learning has become a commonly used method. Several 
algorithms such as Naive Bayes, Support Vector Machine (SVM), and 
Random Forest are often used in this analysis. However, creating a model 
that has optimal accuracy is still a challenge, especially for sentiment 
analysis of unstructured text data. The aim of this research is to try to 
improve the accuracy of the sentiment analysis model by using the 
ensemble learning stacking method approach, namely a method for 
combining several base models to produce better model performance. The 
algorithms that will be the base models in this stacking are Random Forest, 
Naive Bayes and SVM, while the model that makes the final prediction or 
what is called a meta model will use Random Forest. This sentiment 
analysis was carried out in a specific context, namely public opinion after 
the announcement of the results of the 2024 Indonesian presidential 
election. The dataset analyzed using reviews or public opinion regarding 
the results of the 2024 Indonesian presidential election was 6737 tweet 
data collected via the X platform using web scraping. As a result, the Naïve 
Bayes method got an accuracy of 66.84%, SVM got an accuracy of 
77.74%, Random Forest got an accuracy of 74.78% and stacking got an 
accuracy of 81.53%. 
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1. INTRODUCTION  
The Ensemble Learning is a method in machine learning that combines several models to create a new 
model that is stronger than and has superior performance compared to when the algorithms are used 
individually [1], [2]. There are several ensemble learning techniques such as bagging, stacking, averaging 
and boosting, each technique is distinguished by how the model is trained and combined [1]. 

Stacking is an ensemble learning technique that works by combining the results of several different base-
models. Each base-model will learn and have its own prediction results, after that a final model will be created 
which will combine the prediction results of all the base-models which is called a meta-model [3], [4]. The 
Stacking technique is based on the idea that each basic model has its own advantages and disadvantages [5]. 
By combining predictions from different base-models, the resulting meta-model can learn and balance these 
advantages and disadvantages appropriately, so that the overall performance of the stacking model can exceed 
the performance of any individual model and makes it a fairly good technique for improving predictive power 
of the classifier [6], [7]. This is the advantage of the stacking technique compared to other ensemble learning 
techniques and makes stacking a suitable technique for creating models for processing quite complex data 
such as sentiment analysis [8] 

Sentiment analysis is the process of understanding, extracting and processing textual data automatically to 
obtain information on opinions, feelings and emotions contained in a sentence [9]. Sentiment analysis aims to 
understand a person's level of satisfaction and dissatisfaction  with a service or product, as well as 
understanding public perceptions regarding a person's agreement and disagreement with a particular topic [10] 
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Sentiment analysis is generally made using classification algorithm models such as Support Vector Machine 
(SVM), Decission Tree, K-Nearest-Neighbor (KNN), Naïve Bayes, Random Forest, etc [11], [12]. Several 
classification algorithms have been used in several previous studies regarding sentiment analysis carried out 
on opinions taken from social media X or Twitter in Indonesian and each algorithm has different accuracy 
[11]. Compared the SVM algorithm with other algorithms such as Naïve Bayes, Decission Tree and KNN in 
sentiment analysis with different cases or topics, the results is that SVM accuracy is better when compared to 
other algorithms. Even though Naïve Bayes is not superior in accuracy to the SVM algorithm, if we refer to 
research conducted  Naïve Bayes still has better accuracy results when compared to the Decision Tree and 
KNN algorithms [13]. Then, if we refer to research which compared the Random Forest algorithm with other 
algorithms such as Naïve Bayes, KNN, Decission Tree and Logistic Regression, it can be seen that Random 
Forest produces better accuracy than other algorithms including SVM [14]. Other research that shows that 
Random Forest is superior to SVM is research From these studies, it can be seen that the Random Forest, 
SVM and Naïve Bayes algorithms are some of the algorithms with the best accuracy in terms of sentiment 
analysis. 

Even so, sentiment analysis is not an easy task to do. The complexity of language and variations in human 
expressions in various sentences make sentiment analysis a challenge [15], [16]. Building a model that can 
produce accuracy and good performance is also a challenge in sentiment analysis [17] especially sentiment 
analysis of unstructured text, for example data taken from social media such as X or Twitter has its own 
challenges because the language used is usually not appropriate. standard words, involving abbreviations, as 
well as words that are not in the dictionary, thus affecting accuracy[18], [19]. So the accuracy of the sentiment 
analysis model can still be improved with the help of other methods, for example by using the ensemble 
stacking method. 

Based on the description above, a sentiment analysis model will be built using the ensemble learning 
stacking method, with the aim of increasing the accuracy of the model in sentiment analysis on unstructured 
text, which in this case is data collected via the social media platform [10], [20]. This sentiment is the public's 
opinion regarding the results of the 2024 Indonesian Presidential Election. We propose to use Naive Bayes, 
Random Forest and Support Vector Machine as base models and Random Forest as a meta model because 
these models are suitable for sentiment analysis and have been widely used by previous researchers. Beside 
from that, these models also have different characteristics. 
 
2. METHOD 

The research flow presented in this experiment outlines the structured steps taken to achieve the 
objectives of the study. It begins with the identification of the problem, which serves as the foundation for 
formulating the research questions and determining the appropriate methodology. This initial phase is 
crucial to ensure that the research direction is clear and aligned with the intended goals. 

Following problem identification, the flow continues through stages such as data collection, analysis, 
and interpretation. Each step is interconnected, allowing the process to build logically upon the previous 
one. This structured approach not only helps in maintaining the consistency of the study but also enhances 
the reliability and validity of the results obtained. 

Figure 1 provides a visual representation of this research flow. It serves as a guide to understand how the 
experiment was conducted from start to finish. By presenting the process in a flowchart format, it becomes 
easier to grasp the overall methodology and appreciate the systematic effort involved in reaching the 
research conclusions. 
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Fig 1. Flow of Research 

A. DATA COLLECTION 
Based on the description above, a sentiment analysis model will be built using the ensemble learning 
stacking method, with the aim of increasing 

B. DATA PRE-PROCESSING 
This process includes a series of steps to prepare the data before creating a sentiment analysis model. Stages 
that will be carried out in the process pre-processing data is as follows: 

1) CLEANING TEXT 
At this stage, text data will be cleaned has been collected from scrapping results so that the text can be made 
easier  processed by the next stage. Data cleaning includes several  processes such as deleting numbers and 
symbols, changing text to lowercase and also normalize the text or change each word in a sentence becomes 
standard or normal form for omission non-standard words, abbreviations, slang words, typo words etc. Text 
normalization This is done by referring to the dictionary provided which contains non-standard words and 
actual standard words. 

2) TOKENIZATION 
At this stage, every text data has been cleaned will be convert into small parts of each word in  sentences 
are called tokens. For example, sentence “Indonesia Lebih Maju” will be converted to ["Indonesia", "lebih", 
"maju"] 

3) STOPWORD REMOVAL 
At this stage, any common words are not make significant contributions to the meaning of the text will be 
removed.  The stopword dictionary will be taken from a library that has provided a list the stop words are 
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Sastrawi. Some examples of words included in the stopword and will be deleted are like “yang”, “dan”, 
“di”, “adalah”.   

4) STEMMING 
At this stage, every word in the text will be changed  be the basic word. Words with the same ending or 
words those with affixes will be changed to the basic form.   

C. DATA LABELING 
The method that will be used for data labeling is Lexicon Based.  Lexicon based Approach can be used to 
create labeled training datasets for sentiment analysis machine learning algorithms that require labels at the 
start his training [23].  The idea behind the lexicon based approach is that the meaning of a text is greatly 
influenced by the polarity of the words and phrases in inside. This includes words such as adjectives, 
adverbs, nouns, verbs, as well as phrases and sentences that contain them [24]. This approach makes use of 
a dictionary or list of words with predefined sentiment labels. Any data will be carried out Check the total 
score of positive words and negative words. If the word score positive exceeds negative scores, then the 
label is positive, and vice versa then the label is negative. However, if the score is the same or 0, then the 
label is will be neutral. 

D. FEATURE EXTRACTION 
In this process, feature extraction will be carried out using the Term Frequency-Inverse Document 
Frequency (TF-IDF). At this stage, every tweet will be represented as a numerical feature vector, where 
each component The vector will represent the weight of each word in the existing word dictionary. This 
weight calculated based on the frequency of occurrence of words in tweets (TF) and inverse proportional 
to the occurrence of the word in the entire collection of tweets (IDF). This feature extraction process aims 
to change the tweet text into a numerical representation that can be used by the model to perform analysis 
further sentiment.  The formulas of TF-IDF are as follows: 
 

𝑇𝐹(𝑡, 𝑑) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 

(1) 

𝐼𝐷𝐹(𝑡, 𝐷) = log ൬
𝑁

𝑑𝑓(𝑡, 𝐷)
൰ 

(2) 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑)𝑥 𝐼𝐷𝐹(𝑡, 𝐷) (3) 

 N : Total number of documents in the collection 
 df(t,D): Number of documents in the collection containing term t 
 TF(t,d): Term Frequency of term t in document d 
 IDF(t,D): Inverse Document Frequency of term t in all documents D 
 W(t,d): Weight of term t in a document 

E. STACKING MODELLING 
At this stage a model will be built for sentiment analysis. Before that, The data will first be split into 2 parts, 
namely training data and testing data with a percentage of 80% training data and 20% test data. Then, it 
will be done training on each base model, namely naïve Bayes, support vector machine and random forest 
use data that has been split. Every base the model will generate predictions based on these features. Then 
as in the ensemble learning stacking technique stage, the output from the base model will be used as a 
feature for the meta model model, which is in charge combining predictions from the base model to produce 
a prediction the new one. The following is an illustration of the stacking model that will be combined. 
 

 
Fig 2. Stacking Model Illustration 
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Here is the algorithm for the stacking model that will be created 

Table 1. Algortihm Stacking 
Algorithm 1. Stacking  

Input: X_train, y_train, x_test, base_models, meta_model 

Ouput: prediction meta model 

1. START 

2. base_model_outputs_train = [] 

3. FOR model in base_models THEN 

4.         model.fit(X_train, y_train) 

5.         probas_train = model.predict_proba(X_train) 

6.         base_model_outputs_train.append(probas_train) 

7. END FOR 

meta_features_train = np.hstack(base_model_outputs_train) 

meta_model.fit(meta_features_train, y_train) 

8. base_model_outputs_test = [] 

FOR model in base_models THEN 

9.         probas_test = model.predict_proba(X_test) 

10.         base_model_outputs_test.append(probas_test) 

11. END FOR 

meta_features_test = np.hstack(base_model_outputs_test) 

final_predictions = meta_model.predict(meta_features_test) 

12. END 

F. EVALUATION 
After the model building process is complete, the next step is evaluate model performance using confusion 
matrix. Evaluation is carried out against each base model and meta model itself, so you can see the 
comparison of classification results between models. Because this sentiment analysis has 3 labels, namely 
positive, negative and neutral (multi class), the calculation of each metric will use the concept of a weighted 
average where the formula is as follows 

 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
 

(4)  

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛௪௘௜௚௛௧௘ௗ =  

∑ (𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛௜ 𝑥 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎௜)
𝑵
𝒊ୀ𝟏

∑ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎௜
𝑵
𝒊ୀ𝟏

 
(5)  

 
𝑅𝑒𝑐𝑎𝑙𝑙௪௘௜௚௛௧௘ௗ =  

∑ (𝑅𝑒𝑐𝑎𝑙𝑙௜  𝑥 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎௜)
𝑵
𝒊ୀ𝟏

∑ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎௜
𝑵
𝒊ୀ𝟏

 
(6)  

 
𝐹 − 1𝑆𝑐𝑜𝑟𝑒௪௘௜௚௛௧௘ௗ =  

∑ (𝐹 − 1𝑠𝑐𝑜𝑟𝑒௜  𝑥 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎௜)
𝑵
𝒊ୀ𝟏

∑ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎௜
𝑵
𝒊ୀ𝟏

 
(7) 

 

 

 

These evaluation metrics provide a comprehensive view of the model's ability to correctly classify 
sentiments across all classes. By using weighted averages, the metrics take into account the proportion of 
each class, ensuring that imbalanced class distributions do not bias the results. This is particularly important 
in multiclass classification problems where some classes may dominate. The use of these formulas allows 
for a fair comparison of performance between base models and the meta model. 
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3. RESULTS AND DISCUSSION 
A. WEB SCRAPPING RESULT 
The total data collected was 8094 tweets with details of each keyword are as follows. 

Table 2. Data Collected by keyword.  
 

Keyword Query Search Result 

Hasil pemilu 
Hasil pemilu lang:id until:2024-04-30 since:2024-03-20 
-filter:links -filter:repliess 

3482 tweet 

Hasil pemilu presiden Hasil pemilu presiden lang:id until:2024-0 4-30 
since:2024-03-20 -filter:links -filter: repliess 

156  tweet 

Hasil pilpres Hasil pilpres lang:id until:2024-04-30 sinc e:2024-03-20 
-filter:links -filter:repliess 

1983 tweet 

Pemenang pemilu Pemenang pemilu lang:id until:2024-04-3 0 since:2024-
03-20 -filter:links -filter:rep liess 

1000 tweet 

Pemenang pilpres Pemenang pilpres lang:id until:2024-04-3 0 since:2024-
03-20 -filter:links -filter:rep liess 

808 tweet 

Pemenang presiden Pemenang presiden lang:id until:2024-04 30 
since:2024-03-20 -filter:links -filter:re pliess 

274 tweet 

Pengumuman pemilu Pengumuman pemilu lang:id until:2024-0 4-30 
since:2024-03-20 -filter:links -filter: repliess 

221 tweet 

Pengumuman pilpres Pengumuman pilpres lang:id until:2024-0 4-30 
since:2024-03-20 -filter:links -filter: repliess 

170 tweet 

 

B. DATA PRE-PROCESSING 
The pre-processing stage is the first step in preparing the dataset by carrying out several stages, namely 
cleaning text, tokenization, stopword removal and stemming as well as deleting duplicate data. Data 
cleaning of scrapped tweet text includes several processes such as deleting mentions, deleting hashtags, 
deleting retweets, deleting URLs, deleting non-alphanumeric characters, deleting double spaces and 
transform the text into lowercase.  Then, text normalization will be carried out to change words such as 
abbreviations, non-standard words, and slang words into normal and formal words. Finally, to avoid data 
duplication, tweet data that has the same or duplicate sentences will be deleted. So the final total of tweet 
data that will be used in the next stage until the end is 6737 tweets. Here are the results 
 

 

Fig 3. Cleaning Text Result 
 
Next, the tweet text that has been cleaned will be broken down into pieces of words in sentences called 
tokens. Following are some results from the tokenization process 
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Fig 4. Tokenization Result 
 
Next, we enter the stopword removal stage, the tweet text which is already in token form will be removed 
by words that have no meaning in the text. This process was assisted with library assistance from Sastrawi. 
This library provides a function that can provide a list of words in Indonesian that have no meaning. The 
stopword removal process will refer to the list of words provided by the library. Here are the results 
 

 

Fig 5. Stopword removal Result 
 
The final process is stemming. This stage functions to change words that have affixes into basic words. 
This process also uses the stemming function that already exists in the Sastrawi library. In this process, the 
text form will be returned from token to plain text. The following are some texts that have undergone the 
stemming process 
 

 

Fig 6. Stemming Result 
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C. LEXICON BASED LABELLING 
At this stage, labeling of text data that has been previously processed will be carried out using a lexicon-
based approach. At this stage, a dictionary has been prepared containing the words positive sentiment and 
also negative sentiment. After labeling is carried out, the data distribution for each positive, negative and 
neutral sentiment is as follows. 
 

 

Fig 7. Sentiment Distribution 

D. FEATURE EXTRACTION TF-IDF 
In this process, feature extraction is carried out using the Term Frequency-Inverse Document Frequency 
(TF-IDF) method to convert text data into a numerical format that can be processed by a machine learning 
model. The results of the TF-IDF process produce 7256 features or words which have their respective 
weights in vector form. Figure 4.12 is an example of TF-IDF features and their weights in each document. 
The columns in the table represent each word in the entire sentence, while each row represents the sequence 
of the document or text 

 
Fig 8. Word in the entire sentence 

E. STACKING MODELLING 
At this stage, a sentiment analysis model will be built using the ensemble learning stacking method 
involving three algorithms as the base model, namely Naive Bayes, Random Forest, and Support Vector 
Machine, as well as Random Forest as a meta model. The data used in creating this model is divided in a 
ratio of 80:20, where 80% of the data is used for training and 20% for testing. The result is 5389 training 
data and 1348 testing data. The following is sample data 
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Fig 9. Training Data Sample 
 

 

Fig 10. Testing Data Sample 
 
After the data is shared, each base model will be trained using the training data and will later produce 
predictions on the test data. Through the predict_proba function, each model will provide a probability for 
whether the data is labeled positive, negative or neutral. The class or label that has the highest probability 
will be used as the final prediction of the model 

 

Fig 11. Stacking Code 
 
Figure 2 shows the prediction results and the class probability of each model against the test data. The order 
of classes 0, 1 and 2 in the table shows the negative, neutral and positive classes 
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Fig 12. Naïve Bayes Probability Result 
 

 

Fig 13. Random Forest Probability Result 

 

 

Fig 14. SVM Probability Result 
 
 
After all base models have their own predictions, the prediction results will be combined and used as 
features of the meta model. So the meta model will carry out training and testing data using these new 
features. The following is an example of a feature that will be used by the meta model to make final 
predictions 
 

Commented [HS20]: In this section, it is necessary to mention 
the image used as a reference in the explanatory sentence. 



ISSN : 2715-9248  11 

 

JINITA  Vol. x, No. x, December 2019 
DOI: doi.org/10.35970/jinita.vxixx.xx 
 
   

 

Fig 15. Stacking Dataset And Result 

F. EVALUATION 
At this stage, all models that have been trained and have produced predictions will be evaluated to see their 
performance using the Confusion Matrix. The evaluation matrix used includes accuracy, precision recall, 
and F1-score. Each matrix will be calculated using the following formula 
 
The Confusion Matrix for the Naïve Bayes model shows that the model succeeded in predicting correctly 
(True Positive) 323 data with positive sentiment, 105 data with neutral sentiment, 473 data with negative 
sentiment 
 

 

Fig 16. Naïve bayes Model’s Confussion Matrix 
 
Below are calculations to find the accuracy, precision, recall, and F1-score of the Naïve Bayes model 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
323 + 105 + 403

1348
=  

829

1348
=  0.6684 

The accuracy of the Naïve Bayes model is 0.6684 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
323

323 + 115
=  

323

438
=  0.7374 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 =  
105

105 + 44
=  

105

149
=  0,7047 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
473

473 + 288
=  

473

761
=  0,6216 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛௪௘௜௚௛௧௘ௗ =  
(444 × 0,7347)  + (386 × 0,7047) + (518 × 0,6216)

444 + 386 + 518
= 0.6835 

The precission of the Naïve Bayes model is 0.6835 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
323

323 + 121
=  

323

444
= 0,7275 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
105

105 + 281
=  

105

386
=  0.272 
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𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  
473

473 + 45
=  

473

518
=  0.9131 

𝑅𝑒𝑐𝑎𝑙𝑙௪௘௜௚௛௧௘ௗ =  
(444 × 0,7275) + (386 × 0.272) + (518 × 0.9131)

444 + 386 + 518
= 0, 6684 

The recall of the Naïve Bayes model is 0.6684 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,7374 × 0,7275)

(0,7374 + 0,7275)
= 0,7324 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,7047 × 0,272)

(0,7047 + 0,272)
= 0,3925 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,6216 × 0,9131)

(0,6216 + 0,9131)
= 0,7397 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒௪௘௜௚௛௧௘ௗ =  
(444 × 0,7324) + (386 × 0.3925) + (518 × 0.7397)

444 + 386 + 518
= 0, 6379 

The F-1 Score of the Naïve Bayes model is 0.6379 

 
The Confusion Matrix for the Random Forest model shows that the model succeeded in predicting correctly 
(True Positive) 348 data with positive sentiment, 232 data with neutral sentiment, 428 data with negative 
sentiment 
 

 

Fig 17. Random Forest Model’s  Confussion Matrix 
 
Below are calculations to find the accuracy, precision, recall, and F1-score of the Random Forest model 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
=  

348 + 232 + 428

1348
=  

1008

1348
=  0.7478 

The accuracy of the Random Forest model is 0.7478 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
348

348 + 90
=  

348

438
=  0.7945 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 =  
232

232 + 90
=  

232

222
=  0,7205 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
428

428 + 160
=  

428

588
=  0,7279 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛௪௘௜௚௛௧௘ௗ =  
(444 × 0,7945)  + (386 × 0,7205) + (518 × 0,7279)

444 + 386 + 518
= 0.7477 

The precission of the Random Forest model is 0.7477 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
348

348 + 96
=  

348

444
= 0,7838 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
232

232 + 154
=  

232

386
=  0.601 
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𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  
428

428 + 90
=  

428

518
=  0.8263 

𝑅𝑒𝑐𝑎𝑙𝑙௪௘௜௚௛௧௘ௗ =  
(444 × 0,7838) + (386 × 0.601) + (518 × 0.8263)

444 + 386 + 518
= 0, 7478 

The recall of the Random Forest model is 0.7478 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,7945 × 0,7838)

(0,7945 + 0,7838)
= 0,7891 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,7205 × 0,601)

(0,7205 + 0,601)
= 0,6553 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,7279 × 0,8263)

(0,7279 + 0,8263)
= 0,774 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒௪௘௜௚௛௧௘ =  
(444 × 0,6718) + (386 × 0.5771) + (518 × 0.7157)

444 + 386 + 518
= 0, 745 

The F-1 Score of the Random Forest model is 0.745 

 
The Confusion Matrix for the SVM model shows that the model succeeded in predicting correctly (True 
Positive) 370 data with positive sentiment, 252 data with neutral sentiment, 426 data with negative 
sentiment 
 

 

Fig 18. SVM Model’s Confussion Matrix 

 
Below are calculations to find the accuracy, precision, recall, and F1-score of the SVM model 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
=  

370 + 252 + 426

13512
=  

1048

1351
=  0.7774 

The accuracy of the SVM model is 0.7774 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
370

370 + 84
=  

370

454
=  0.815 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 =  
252

252 + 106
=  

252

358
=  0,7039 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
426

426 + 110
=  

426

536
=  0,7984 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛௪௘௜௚௛௧௘ௗ =  
(444 × 0,815)  + (386 × 0,7039) + (518 × 0,7984)

444 + 386 + 518
= 0.7754 

The precission of the naïve Bayes model is 0.7754 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
370

370 + 74
=  

370

444
= 0,8333 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
252

252 + 134
=  

252

386
=  0.6528 
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𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  
426

426 + 92
=  

426

518
=  0.8224 

𝑅𝑒𝑐𝑎𝑙𝑙௪௘௜௚௛௧௘ௗ =  
(444 × 0,8333) + (386 × 0.6528) + (518 × 0.8224)

444 + 386 + 518
= 0, 7774 

The recall of the SVM model is 0.7774 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,815 × 0,8333)

(0,815 + 0,8333)
= 0,824 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,7039 × 0,6528)

(0,7039 + 0,6528)
= 0,6774 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,7984 × 0,8224)

(0,7984 + 0,8224)
= 0,8084 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒௪௘௜௚௛௧௘ௗ =  
(444 × 0,824) + (386 × 0.6774) + (518 × 0.8084)

444 + 386 + 518
= 0, 8084 

The F-1 Score of the SVM model is 0.8084 

 
The Confusion Matrix for the stacking model shows that the model succeeded in predicting correctly (True 
Positive) 396 data with positive sentiment, 256 data with neutral sentiment, 447 data with negative 
sentiment. 
 

 

Fig 19. Stacking Model’s Confussion Matrix 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
=  

396 + 256 + 447

13512
=  

1099

1351
=  0.8153 

Below are calculations to find the accuracy, precision, recall, and F1-score of the Stacking model 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
396

396 + 93
=  

396

489
=  0.8089 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 =  
256

256 + 59
=  

256

315
=  0.8127 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
447

447 + 97
=  

447

544
=  0,8127 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛௪௘௜௚௛௧௘ௗ =  
(444 × 0,8089)  + (386 × 0,8127) + (518 × 0,8127)

444 + 386 + 518
= 0.8152 

The accuracy of the Stacking model is 0.8152 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
396

396 + 48
=  

396

444
= 0,8919 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
256

256 + 130
=  

256

386
=  0.6632 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  
447

447 + 71
=  

447

518
=  0.8629 

𝑅𝑒𝑐𝑎𝑙𝑙௪௘௜௚௛௧௘ௗ =  
(444 × 0,8919) + (386 × 0.6632) + (518 × 0.8629)

444 + 386 + 518
= 0, 8153 
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The recall of the Stacking model is 0.8153 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,8098 × 0,8919)

(0,8098 + 0,8919)
= 0,8489 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,8127 × 0,6632)

(0,8127 + 0,6632)
= 0,7304 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,8217 × 0,8629)

(0,8217 + 0,8629)
= 0,8418 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒௪௘௜௚௛௧௘ௗ =  
(444 × 0,6718) + (386 × 0.5771) + (518 × 0.7157)

444 + 386 + 518
= 0, 8122 

The F-1 Score of the Stacking model is 0.8122 

The Result of all model can be seen in the table below 
Table 3. Results Of Model 

 

Model Accuracy Precission Recall F-1 Score 

Naïve Bayes 0.6684 0.6835 0,6684 0,6379 

Support Vector Machine 0.7774 0.7754 0,7774 0,776 

Random Forest 0.7478 0.7477 0,7478 0,745 

Ensemble Stacking (RF) 0.8153 0.8152 0,8153 0,8122 

 
4. CONCLUSION  

As a result of this experiment, an ensemble learning stacking model was formed with several 
different base models, namely the SVM, Random Forest and Naïve Bayes algorithms. Each model carries 
out training and predictions on sentiment analysis data. The results, starting from the lowest, are the Naïve 
Bayes algorithm with an accuracy of 66.84%, followed by Random Forest with an accuracy of 74.78%, and 
the highest is SVM with an accuracy of 77.74%. The results of the three base models are compiled and used 
as input for a meta model that uses the Random Forest algorithm. The results show that the stacking 
ensemble method applied produces better accuracy than a single classifier, namely 81.53%. Thus, it can be 
concluded that ensemble learning stacking with the SVM, Random Forest and Naïve Bayes base models as 
well as meta models using Random Forest can increase the accuracy of sentiment analysis models on 
unstructured text data 
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Sentiment analysis is a text processing technique aimed at identifying 
opinions and emotions within a sentence. Machine learning is commonly 
applied in this area, with algorithms such as Naïve Bayes, Support Vector 
Machine (SVM), and Random Forest being frequently used. However, 
achieving optimal accuracy remains a challenge, particularly when dealing 
with unstructured text data, such as content from social media platforms. 
This research seeks to improve sentiment analysis performance by 
implementing a stacking ensemble learning approach, which combines the 
predictive strengths of several base models. The base models selected for 
this study are Naïve Bayes, SVM, and Random Forest, while Random 
Forest also serves as the meta-model to generate final predictions. 
The study focuses on sentiment analysis in a specific context—public 
opinion following the announcement of the Indonesian presidential 
election results in 2024. The dataset comprises 6,737 tweets collected from 
the X platform using web scraping techniques in 2024. Results show that 
individual models achieved varying levels of accuracy: Naïve Bayes at 
66.84%, SVM at 77.74%, and Random Forest at 74.78%. In contrast, the 
stacking ensemble model achieved a significantly higher accuracy of 
81.53%. This improvement highlights the effectiveness of ensemble 
learning in integrating different algorithmic perspectives to enhance 
predictive performance. By leveraging the complementary strengths of 
each base model, stacking not only boosts accuracy but also increases 
model robustness, making it highly suitable for real-world sentiment 
analysis applications that involve noisy and informal textual data from 
social media. 
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1. INTRODUCTION  
The Ensemble Learning is a method in machine learning that combines several models to create a new 
model that is stronger than and has superior performance compared to when the algorithms are used 
individually [1], [2]. There are several ensemble learning techniques such as bagging, stacking, averaging 
and boosting, each technique is distinguished by how the model is trained and combined [1]. 

Stacking is an ensemble learning technique that works by combining the results of several different base-
models. Each base-model will learn and have its own prediction results, after that a final model will be 
created which will combine the prediction results of all the base-models which is called a meta-model [3], 
[4]. The Stacking technique is based on the idea that each basic model has its own advantages and 
disadvantages [5]. By combining predictions from different base-models, the resulting meta-model can 
learn and balance these advantages and disadvantages appropriately, so that the overall performance of the 
stacking model can exceed the performance of any individual model and makes it a fairly good technique 
for improving predictive power of the classifier [6], [7]. This is the advantage of the stacking technique 
compared to other ensemble learning techniques and makes stacking a suitable technique for creating 
models for processing quite complex data such as sentiment analysis [8] 

Sentiment analysis is the process of understanding, extracting and processing textual data automatically 
to obtain information on opinions, feelings and emotions contained in a sentence [9]. Sentiment analysis 
aims to understand a person's level of satisfaction and dissatisfaction  with a service or product, as well as 
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understanding public perceptions regarding a person's agreement and disagreement with a particular topic 
[10] 

Sentiment analysis is generally made using classification algorithm models such as Support Vector 
Machine (SVM), Decission Tree, K-Nearest-Neighbor (KNN), Naïve Bayes, Random Forest, etc [11], [12]. 
Several classification algorithms have been used in several previous studies regarding sentiment analysis 
carried out on opinions taken from social media X or Twitter in Indonesian and each algorithm has different 
accuracy [11]. Comparing the SVM algorithm with other algorithms such as Naïve Bayes, Decission Tree 
and KNN in sentiment analysis with different cases or topics, the result is that SVM accuracy is better when 
compared to other algorithms. Even though Naïve Bayes is not superior in accuracy to the SVM algorithm, 
if we refer to research conducted  Naïve Bayes still has better accuracy results when compared to the 
Decision Tree and KNN algorithms [13]. Then, if we refer to research which compares the Random Forest 
algorithm with other algorithms such as Naïve Bayes, KNN, Decission Tree and Logistic Regression, it can 
be seen that Random Forest produces better accuracy than other algorithms including SVM [14]. Other 
research that shows that Random Forest is superior to SVM is research From these studies, it can be seen 
that the Random Forest, SVM and Naïve Bayes algorithms are some of the algorithms with the best 
accuracy in terms of sentiment analysis. 

Even so, sentiment analysis is not an easy task to do. The complexity of language and variations in human 
expressions in various sentences make sentiment analysis a challenge [15], [16]. Building a model that can 
produce accuracy and good performance is also a challenge in sentiment analysis [17] especially sentiment 
analysis of unstructured text, for example data taken from social media such as X or Twitter has its own 
challenges because the language used is usually not appropriate. standard words, involving abbreviations, 
as well as words that are not in the dictionary, thus affecting accuracy[18], [19]. So the accuracy of the 
sentiment analysis model can still be improved with the help of other methods, for example by using the 
ensemble stacking method. 

Based on the description above, a sentiment analysis model will be built using the ensemble learning 
stacking method, with the aim of increasing the accuracy of the model in sentiment analysis on unstructured 
text, which in this case is data collected via the social media platform [10], [20]. This sentiment is the 
public's opinion regarding the results of the 2024 Indonesian Presidential Election. We propose to use Naive 
Bayes, Random Forest and Support Vector Machine as base models and Random Forest as a meta model 
because these models are suitable for sentiment analysis and have been widely used by previous researchers. 
Besides that, these models also have different characteristics. 
 
2. METHOD 

The research flow presented in this experiment outlines the structured steps taken to achieve the 
objectives of the study. It begins with the identification of the problem, which serves as the foundation for 
formulating the research questions and determining the appropriate methodology. This initial phase is 
crucial to ensure that the research direction is clear and aligned with the intended goals. 

Following problem identification, the flow continues through stages such as data collection, analysis, 
and interpretation. Each step is interconnected, allowing the process to build logically upon the previous 
one. This structured approach not only helps in maintaining the consistency of the study but also enhances 
the reliability and validity of the results obtained. 

Figure 1 provides a visual representation of this research flow. It serves as a guide to understand how the 
experiment was conducted from start to finish. By presenting the process in a flowchart format, it becomes 
easier to grasp the overall methodology and appreciate the systematic effort involved in reaching the 
research conclusions. 
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Fig 1. Flow of Research 

A. DATA COLLECTION 
Based on the description above, a sentiment analysis model will be built using the ensemble learning 
stacking method, with the aim of increasing 

B. DATA PRE-PROCESSING 
This process includes a series of steps to prepare the data before creating a sentiment analysis model. Stages 

that will be carried out in the process pre-processing data is as follows: 

1) CLEANING TEXT 
At this stage, text data will be cleaned has been collected from scrapping results so that the text can be made 
easier  processed by the next stage. Data cleaning includes several  processes such as deleting numbers and 
symbols, changing text to lowercase and also normalize the text or change each word in a sentence becomes 
standard or normal form for omission non-standard words, abbreviations, slang words, typo words etc. Text 
normalization This is done by referring to the dictionary provided which contains non-standard words and 
actual standard words. 

2) TOKENIZATION 
At this stage, every text data has been cleaned will be convert into small parts of each word in  sentences 
called tokens. For example, sentence “Indonesia Lebih Maju” will be converted to ["Indonesia", "lebih", 
"maju"] 

3) STOPWORD REMOVAL 
At this stage, any common words are not make significant contributions to the meaning of the text will be 
removed.  The stopword dictionary will be taken from a library that has provided a list the stop words are 
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Sastrawi. Some examples of words included in the stopword and will be deleted are like “yang”, “dan”, 
“di”, “adalah”.   

4) STEMMING 
At this stage, every word in the text will be changed  be the basic word. Words with the same ending or 
words those with affixes will be changed to the basic form.   

C. DATA LABELING 
The method that will be used for data labeling is Lexicon Based.  Lexicon based Approach can be used to 
create labeled training datasets for sentiment analysis machine learning algorithms that require labels at the 
start of his training [23].  The idea behind the lexicon based approach is that the meaning of a text is greatly 
influenced by the polarity of the words and phrases inside. This includes words such as adjectives, adverbs, 
nouns, verbs, as well as phrases and sentences that contain them [24]. This approach makes use of a 
dictionary or list of words with predefined sentiment labels. Any data will be carried out Check the total 
score of positive words and negative words. If the word score positive exceeds negative scores, then the 
label is positive, and vice versa then the label is negative. However, if the score is the same or 0, then the 
label will be neutral. 

D. FEATURE EXTRACTION 
In this process, feature extraction will be carried out using the Term Frequency-Inverse Document 
Frequency (TF-IDF). At this stage, every tweet will be represented as a numerical feature vector, where 
each component The vector will represent the weight of each word in the existing word dictionary. This 
weight calculated based on the frequency of occurrence of words in tweets (TF) and inverse proportional 
to the occurrence of the word in the entire collection of tweets (IDF). This feature extraction process aims 
to change the tweet text into a numerical representation that can be used by the model to perform further 
analysis. The formulas used for calculating Term Frequency-Inverse Document Frequency (TF-IDF) are as 
follows 
 

𝑇𝐹(𝑡, 𝑑) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 

(1) 

𝐼𝐷𝐹(𝑡, 𝐷) =𝑙𝑜𝑔 𝑙𝑜𝑔 ൬
𝑁

𝑑𝑓(𝑡, 𝐷)
൰  (2) 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑)𝑥 𝐼𝐷𝐹(𝑡, 𝐷) (3) 

To implement the TF-IDF method effectively, it is essential to understand the 
meaning of each variable used in the formulas. Below are the definitions of the terms 
involved: 

 

 

● N   : Total number of documents in the collection 
● df(t,D) : Number of documents in the collection containing term t 
● TF(t,d) : Term Frequency of term t in document d 
● IDF(t,D) : Inverse Document Frequency of term t in all documents D 
● W(t,d) : Weight of term t in a document 
 
These variables are used in the equations for TF, IDF, and the final TF-IDF score, which together represent 
the importance of a term within a specific document in relation to a corpus of documents. 

E. STACKING MODELLING 
At this stage a model will be built for sentiment analysis. Before that, The data will first be split into 2 parts, 
namely training data and testing data with a percentage of 80% training data and 20% test data. Then, it 
will be done training on each base model, namely naïve Bayes, support vector machine and random forest 
use data that has been split. Every base the model will generate predictions based on these features. As part 
of the stacking ensemble learning technique, the output from each base model is used as input for the meta 
model to generate the final prediction. This process is illustrated in Figure 2, which shows the stacking 
model architecture. Meanwhile, Table 1 describes the algorithm used, outlining the steps of training base 
models, collecting their prediction probabilities, and feeding them into the meta model. This structure 
allows the meta model to learn from multiple perspectives, improving overall prediction performance. 
. 
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Fig 2. Stacking Model Illustration 

 
Here is the algorithm for the stacking model that will be created 

Table 1. Algortihm Stacking 
Algorithm 1. Stacking  

Input: X_train, y_train, x_test, base_models, meta_model 

Output: prediction meta model 

1. START 

2. base_model_outputs_train = [] 

3. FOR model in base_models THEN 

4.         model.fit(X_train, y_train) 

5.         probas_train = model.predict_proba(X_train) 

6.         base_model_outputs_train.append(probas_train) 

7. END FOR 

meta_features_train = np.hstack(base_model_outputs_train) 

meta_model.fit(meta_features_train, y_train) 

8. base_model_outputs_test = [] 

FOR model in base_models THEN 

9.         probas_test = model.predict_proba(X_test) 

10.         base_model_outputs_test.append(probas_test) 

11. END FOR 

meta_features_test = np.hstack(base_model_outputs_test) 

final_predictions = meta_model.predict(meta_features_test) 

12. END 

F. EVALUATION 
After the model building process is complete, the next step is evaluate model performance using confusion 
matrix. Evaluation is carried out against each base model and meta model itself, so you can see the 
comparison of classification results between models. Because this sentiment analysis involves three 
classes—positive, negative, and neutral—the evaluation uses weighted average calculations. The metrics 
applied are Accuracy (Equation 4), Precision (Equation 5), Recall (Equation 6), and F1-Score 
(Equation 7) to ensure fair assessment across all classes. 

 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
 

(4)  

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௪௘௜௚௛௧௘ௗ =  

∑ே
௜ୀଵ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜  𝑥 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎௜)

∑ே
௜ୀଵ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎௜

 
(5)  

 
𝑅𝑒𝑐𝑎𝑙𝑙௪௘௜௚௛௧௘ௗ =  

∑ே
௜ୀଵ (𝑅𝑒𝑐𝑎𝑙𝑙௜  𝑥 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎௜)

∑ே
௜ୀଵ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎௜

 
(6)  

 𝐹 − 1𝑆𝑐𝑜𝑟𝑒௪௘௜௚௛௧௘ௗ

=  
∑ே

௜ୀଵ (𝐹 − 1𝑠𝑐𝑜𝑟𝑒௜  𝑥 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎௜)

∑ே
௜ୀଵ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎௜

 

(7) 
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These evaluation metrics provide a comprehensive view of the model's ability to correctly classify 
sentiments across all classes. By using weighted averages, the metrics take into account the proportion of 
each class, ensuring that imbalanced class distributions do not bias the results. This is particularly important 
in multiclass classification problems where some classes may dominate. The use of these formulas allows 
for a fair comparison of performance between base models and the meta model. 

 
 
 

 
3. RESULTS AND DISCUSSION 
A. WEB SCRAPPING RESULT 
The total data collected was 8094 tweets with details of each keyword are as follows. 

Table 2. Data Collected by keyword.  
 

Keyword Query Search Result 

Hasil pemilu 
Hasil pemilu lang:id until:2024-04-30 since:2024-03-20 

-filter:links -filter:repliess 
3482 tweet 

Hasil pemilu presiden Hasil pemilu presiden lang:id until:2024-0 4-30 
since:2024-03-20 -filter:links -filter: repliess 

156  tweet 

Hasil pilpres Hasil pilpres lang:id until:2024-04-30 sinc e:2024-03-
20 -filter:links -filter:replies 

1983 tweet 

Pemenang pemilu Pemenang pemilu lang:id until:2024-04-3 0 since:2024-
03-20 -filter:links -filter:rep liess 

1000 tweet 

Pemenang pilpres Pemenang pilpres lang:id until:2024-04-3 0 since:2024-
03-20 -filter:links -filter:rep liess 

808 tweet 

Pemenang presiden Pemenang presiden lang:id until:2024-04 30 
since:2024-03-20 -filter:links -filter:replies 

274 tweet 

Pengumuman pemilu Pengumuman pemilu lang:id until:2024-0 4-30 
since:2024-03-20 -filter:links -filter: repliess 

221 tweet 

Pengumuman pilpres Pengumuman pilpres lang:id until:2024-0 4-30 
since:2024-03-20 -filter:links -filter: repliess 

170 tweet 

 

B. DATA PRE-PROCESSING 
The pre-processing stage is the first step in preparing the dataset by carrying out several stages, namely 
cleaning text, tokenization, stopword removal and stemming as well as deleting duplicate data. Data 
cleaning of scrapped tweet text includes several processes such as deleting mentions, deleting hashtags, 
deleting retweets, deleting URLs, deleting non-alphanumeric characters, deleting double spaces and 
transform the text into lowercase.  Then, text normalization will be carried out to change words such as 
abbreviations, non-standard words, and slang words into normal and formal words. Finally, to avoid data 
duplication, tweet data that has the same or duplicate sentences will be deleted. So the final total of tweet 
data that will be used in the next stage until the end is 6737 tweets. The following results are based on the 
analysis shown in the reference image. 
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Fig 3. Cleaning Text Result 
 
After the normalization stage is complete, the next step in the data preprocessing process is tokenization. 
Tokenization is the process of breaking down text into small parts called tokens, usually single words. This 
process aims to separate each element in a sentence so that it can be explained individually by the modeling 
algorithm. In this study, tokenization was carried out on tweet text that had been cleaned and normalized 
previously. For example, the sentence "is not surprised by the presidential election results announced by 
the KPU tonight ..." will be changed into a series of words such as ['already', 'not', 'surprised', 'with', 'results', 
'presidential election', 'which', 'di', 'announce', 'kpu', 'night', 'ini']. This process is very important because it 
allows each word to be identified as a feature that can be used for sentiment analysis. With tokenization, 
the model can understand the context of words in a sentence and separate words that have significant 
meaning. Tokenization is also a crucial initial stage before further processes such as removing stop words, 
stemming, and extracting features using the TF-IDF method are carried out. 
 

 

Fig 4. Tokenization Result 
 
After going through the tokenization stage, the next process in data preprocessing is stopword removal, 
which is the removal of words that are considered not to have a significant contribution to the meaning of 
the text. Stopwords are common words such as "yang", "dan", "di", "ini", "dari", and so on, which often 
appear in the text but do not provide important information in the context of sentiment analysis. In this 
study, the stopword removal process was carried out using the Sastrawi library, which provides a list of 
common words in Indonesian that are classified as stopwords. Each tokenized token will be checked and 
compared with the list, then removed if found in the list. For example, a tokenized sentence such as ['sudah', 
'tidak', 'kaget', 'dengan', 'hasil', 'pilpres', 'yang', 'di', 'umumkan', 'kpu', 'malam', 'ini'] after being processed 
becomes ['kaget', 'hasil', 'pilpres', 'umumkan', 'kpu', 'malam'], with words such as "sudah", "yang", "di", and 
"ini" having been removed. This process helps reduce noise in the data and ensures that only important 
words are used in the next stages of analysis, such as stemming and feature extraction. Thus, stopword 
removal plays a vital role in improving the efficiency and accuracy of sentiment analysis models. 
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Fig 5. Stopword removal Result 
 
The final process in the data preprocessing stage is stemming, which is the process of changing words that 
have affixes such as prefixes, suffixes, or a combination of both into a basic form (root word). The purpose 
of this process is to weave variations in word forms that have the same meaning, so as to improve data 
consistency and analysis effectiveness. In this study, the stemming process was carried out using the 
Sastrawi library, which is specifically designed to handle Indonesian language morphology. For example, 
words such as "ngumumin" are changed to "umum", "orangorang" to "orang", and "bangett" to "banget". 
After stemming, the form of tokens that have been combined will be recombined into plain text, which will 
be used in the next stage, namely feature extraction. With stemming, the number of word variations in the 
dataset can be minimized, so that the machine learning model can recognize patterns more accurately and 
efficiently. This process is very important, especially in handling unstructured data such as tweets, which 
contain many non-standard words and spelling variations. 

 

Fig 6. Stemming Result 

C. LEXICON BASED LABELLING 
At this stage, labeling of text data that has been previously processed will be carried out using a lexicon-
based approach. At this stage, a dictionary has been prepared containing the words positive sentiment and 
also negative sentiment. In this section, it is necessary to mention the image used as a reference in the 
explanatory sentence. After labeling is carried out, the data distribution for each positive, negative, and 
neutral sentiment is shown in the reference Fig. 7. 
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Fig 7. Sentiment Distribution 

D. FEATURE EXTRACTION TF-IDF 
In this process, feature extraction is carried out using the Term Frequency-Inverse Document Frequency 
(TF-IDF) method to convert text data into a numerical format that can be processed by a machine learning 
model. The results of the TF-IDF process produce 7256 features or words which have their respective 
weights in vector form. Figure 4.12 is an example of TF-IDF features and their weights in each document. 
The columns in the table represent each word in the entire sentence, while each row represents the 
sequence of the document or text. This arrangement is illustrated in the reference image (see Figure 8). 
 

 
Fig 8. Word in the entire sentence 

E. STACKING MODELLING 
At this stage, a sentiment analysis model will be built using the ensemble learning stacking method 
involving three algorithms as the base model, namely Naive Bayes, Random Forest, and Support Vector 
Machine, as well as Random Forest as a meta model. The data used in creating this model is divided in a 
ratio of 80:20, where 80% of the data is used for training and 20% for testing. The result is 5389 training 
data and 1348 testing data. The following represents sample data, as depicted in the reference image (see 
Figure 9). 
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Fig 9. Training Data Sample 
 

 

Fig 10. Testing Data Sample 
 
After the data is shared, each base model will be trained using the training data and will later produce 
predictions on the test data. Through the predict_proba function, each model will provide a probability for 
whether the data is labeled positive, negative or neutral. The class or label that has the highest probability 
will be used as the final prediction of the model in the Figure 11. 

 

Fig 11. Stacking Code 
 
Figure 2 shows the prediction results and the class probability of each model against the test data. The order 
of classes 0, 1 and 2 in the table shows the negative, neutral and positive classes in the Figure 12. 
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Fig 12. Naïve Bayes Probability Result 
 

 

Fig 13. Random Forest Probability Result 

 

 

Fig 14. SVM Probability Result 
 
 
After all base models have their own predictions, the prediction results will be combined and used as 
features of the meta model. So the meta model will carry out training and testing data using these new 
features. The following is an example of a feature that will be used by the meta model to make final 
predictions in figure 15. 
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Fig 15. Stacking Dataset And Result 

F. EVALUATION 
At this stage, all models that have been trained and have produced predictions will be evaluated to see their 
performance using the Confusion Matrix. The evaluation matrix used includes accuracy, precision recall, 
and F1-score. Each matrix will be calculated using the following formula 
 
The Confusion Matrix for the Naïve Bayes model shows that the model succeeded in predicting correctly 
(True Positive) 323 data with positive sentiment, 105 data with neutral sentiment, 473 data with negative 
sentiment in figure 16. 
 

 

Fig 16. Naïve bayes Model’s Confusion Matrix 
 
Below are calculations to find the accuracy, precision, recall, and F1-score of the Naïve Bayes model 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
323 + 105 + 403

1348
=  

829

1348
=  0.6684 

The accuracy of the Naïve Bayes model is 0.6684 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
323

323 + 115
=  

323

438
=  0.7374 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 =  
105

105 + 44
=  

105

149
=  0,7047 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
473

473 + 288
=  

473

761
=  0,6216 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௪௘௜௚௛௧௘ௗ =  
(444 × 0,7347)  + (386 × 0,7047) + (518 × 0,6216)

444 + 386 + 518
= 0.6835 

The precision of the Naïve Bayes model is 0.6835 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
323

323 + 121
=  

323

444
= 0,7275 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
105

105 + 281
=  

105

386
=  0.272 
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𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  
473

473 + 45
=  

473

518
=  0.9131 

𝑅𝑒𝑐𝑎𝑙𝑙௪௘௜௚௛௧௘ௗ =  
(444 × 0,7275) + (386 × 0.272) + (518 × 0.9131)

444 + 386 + 518
= 0, 6684 

The recall of the Naïve Bayes model is 0.6684 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,7374 × 0,7275)

(0,7374 + 0,7275)
= 0,7324 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,7047 × 0,272)

(0,7047 + 0,272)
= 0,3925 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,6216 × 0,9131)

(0,6216 + 0,9131)
= 0,7397 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒௪௘௜௚௛௧௘ௗ =  
(444 × 0,7324) + (386 × 0.3925) + (518 × 0.7397)

444 + 386 + 518
= 0, 6379 

The F-1 Score of the Naïve Bayes model is 0.6379 

 
The Confusion Matrix for the Random Forest model shows that the model succeeded in predicting correctly 
(True Positive) 348 data with positive sentiment, 232 data with neutral sentiment, 428 data with negative 
sentiment in Figure 17. 
 

 

Fig 17. Random Forest Model’s  Confussion Matrix 
 
Below are calculations to find the accuracy, precision, recall, and F1-score of the Random Forest model 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
=  

348 + 232 + 428

1348
=  

1008

1348
=  0.7478 

The accuracy of the Random Forest model is 0.7478 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
348

348 + 90
=  

348

438
=  0.7945 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 =  
232

232 + 90
=  

232

222
=  0,7205 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
428

428 + 160
=  

428

588
=  0,7279 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௪௘௜௚௛௧௘ௗ =  
(444 × 0,7945)  + (386 × 0,7205) + (518 × 0,7279)

444 + 386 + 518
= 0.7477 

The precision of the Random Forest model is 0.7477 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
348

348 + 96
=  

348

444
= 0,7838 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
232

232 + 154
=  

232

386
=  0.601 
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𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  
428

428 + 90
=  

428

518
=  0.8263 

𝑅𝑒𝑐𝑎𝑙𝑙௪௘௜௚௛௧௘ௗ =  
(444 × 0,7838) + (386 × 0.601) + (518 × 0.8263)

444 + 386 + 518
= 0, 7478 

The recall of the Random Forest model is 0.7478 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,7945 × 0,7838)

(0,7945 + 0,7838)
= 0,7891 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,7205 × 0,601)

(0,7205 + 0,601)
= 0,6553 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,7279 × 0,8263)

(0,7279 + 0,8263)
= 0,774 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒௪௘௜௚௛௧௘ௗ =  
(444 × 0,6718) + (386 × 0.5771) + (518 × 0.7157)

444 + 386 + 518
= 0, 745 

The F-1 Score of the Random Forest model is 0.745 

 
The Confusion Matrix for the SVM model shows that the model succeeded in predicting correctly (True 
Positive) 370 data with positive sentiment, 252 data with neutral sentiment, 426 data with negative 
sentiment in Figure 18. 
 

 

Fig 18. SVM Model’s Confusion Matrix 

 
Below are calculations to find the accuracy, precision, recall, and F1-score of the SVM model 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
=  

370 + 252 + 426

13512
=  

1048

1351
=  0.7774 

The accuracy of the SVM model is 0.7774 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
370

370 + 84
=  

370

454
=  0.815 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 =  
252

252 + 106
=  

252

358
=  0,7039 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
426

426 + 110
=  

426

536
=  0,7984 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛௪௘௜௚௛௧௘ௗ =  
(444 × 0,815)  + (386 × 0,7039) + (518 × 0,7984)

444 + 386 + 518
= 0.7754 

The precission of the naïve Bayes model is 0.7754 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
370

370 + 74
=  

370

444
= 0,8333 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
252

252 + 134
=  

252

386
=  0.6528 
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𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  
426

426 + 92
=  

426

518
=  0.8224 

𝑅𝑒𝑐𝑎𝑙𝑙௪௘௜௚௛௧௘ௗ =  
(444 × 0,8333) + (386 × 0.6528) + (518 × 0.8224)

444 + 386 + 518
= 0, 7774 

The recall of the SVM model is 0.7774 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,815 × 0,8333)

(0,815 + 0,8333)
= 0,824 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,7039 × 0,6528)

(0,7039 + 0,6528)
= 0,6774 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,7984 × 0,8224)

(0,7984 + 0,8224)
= 0,8084 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒௪௘௜௚௛௧௘ௗ =  
(444 × 0,824) + (386 × 0.6774) + (518 × 0.8084)

444 + 386 + 518
= 0, 8084 

The F-1 Score of the SVM model is 0.8084 

 
The Confusion Matrix for the stacking model shows that the model succeeded in predicting correctly (True 
Positive) 396 data with positive sentiment, 256 data with neutral sentiment, 447 data with negative 
sentiment in Figure 19. 
 

 

Fig 19. Stacking Model’s Confusion Matrix 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
=  

396 + 256 + 447

13512
=  

1099

1351
=  0.8153 

Below are calculations to find the accuracy, precision, recall, and F1-score of the Stacking model 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
396

396 + 93
=  

396

489
=  0.8089 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑁𝑒𝑡𝑟𝑎𝑙 =  
256

256 + 59
=  

256

315
=  0.8127 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =
447

447 + 97
=  

447

544
=  0,8127 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௪௘௜௚௛௧௘ௗ =  
(444 × 0,8089)  + (386 × 0,8127) + (518 × 0,8127)

444 + 386 + 518
= 0.8152 

The accuracy of the Stacking model is 0.8152 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  
396

396 + 48
=  

396

444
= 0,8919 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑡𝑟𝑎𝑙 =  
256

256 + 130
=  

256

386
=  0.6632 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  
447

447 + 71
=  

447

518
=  0.8629 

𝑅𝑒𝑐𝑎𝑙𝑙௪௘௜௚௛௧௘ௗ =  
(444 × 0,8919) + (386 × 0.6632) + (518 × 0.8629)

444 + 386 + 518
= 0, 8153 



ISSN : 2715-9248  16 

 

JINITA  Vol. x, No. x, December 2019 
DOI: doi.org/10.35970/jinita.vxixx.xx 
 
   

The recall of the Stacking model is 0.8153 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 =  2 𝑥 
(0,8098 × 0,8919)

(0,8098 + 0,8919)
= 0,8489 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑡𝑟𝑎𝑙 =  2 𝑥 
(0,8127 × 0,6632)

(0,8127 + 0,6632)
= 0,7304 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑓 =  2 𝑥 
(0,8217 × 0,8629)

(0,8217 + 0,8629)
= 0,8418 

𝐹 − 1𝑆𝑐𝑜𝑟𝑒௪௘௜௚௛௧௘ =  
(444 × 0,6718) + (386 × 0.5771) + (518 × 0.7157)

444 + 386 + 518
= 0, 8122 

The F-1 Score of the Stacking model is 0.8122 

The Result of all model can be seen in the table below 
Table 3. Results Of Model 

 

Model Accuracy Precision Recall F-1 Score 

Naïve Bayes 0.6684 0.6835 0,6684 0,6379 

Support Vector Machine 0.7774 0.7754 0,7774 0,776 

Random Forest 0.7478 0.7477 0,7478 0,745 

Ensemble Stacking (RF) 0.8153 0.8152 0,8153 0,8122 

 
4. CONCLUSION  

As a result of this experiment, an ensemble learning stacking model was formed with several 
different base models, namely the SVM, Random Forest and Naïve Bayes algorithms. Each model carries 
out training and predictions on sentiment analysis data. The results, starting from the lowest, are the Naïve 
Bayes algorithm with an accuracy of 66.84%, followed by Random Forest with an accuracy of 74.78%, and 
the highest is SVM with an accuracy of 77.74%. The results of the three base models are compiled and used 
as input for a meta model that uses the Random Forest algorithm. The results show that the stacking 
ensemble method applied produces better accuracy than a single classifier, namely 81.53%. The 
implementation of ensemble learning through stacking, combining SVM, Random Forest, and Naïve Bayes 
as base models with a Random Forest meta-model, significantly enhances the accuracy and robustness of 
sentiment analysis on unstructured text data, demonstrating its effectiveness as a key contribution of this 
research.. The findings in this study not only demonstrate the success of the stacking technique in improving 
the accuracy of sentiment analysis, but also have important applications in social and practical contexts. In 
practice, this model can be applied by government agencies, media, or research organizations to 
automatically aggregate public opinion on national issues, such as election results. This allows for more 
responsive and accurate data-driven decision-making. In addition, this study contributes to the development 
of a robust machine learning model for unstructured data in Indonesian, which has so far been limited in 
the literature. Further research can explore this integration model with deep learning or apply it in different 
domains such as consumer opinion or public services. 
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